963 resultados para colon adenocarcinoma
Resumo:
Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies with less than 5% of five year survival rate. New molecular markers and new therapeutic targets are urgently needed for patients with PDA. Oncogenic receptor tyrosine kinase Axl has been reported to be overexpressed in many types of human malignancies, including diffuse glioma, melanoma, osteosarcoma, and carcinomas of lung, colon, prostate, breast, ovary, esophagus, stomach, and kidney. However, the expression and functions of Axl in PDA are unclear. We hypothesized that Axl contributes to the development and progression of PDA. We examined Axl expression in 54 human PDA samples and their paired benign pancreatic tissue by immunohistochemistry, we found that Axl was overexpressed in 70% of stage II PDAs, but only 22% of benign ducts (P=0.0001). Axl overexpression was associated with higher frequencies of distant metastasis and was an independent prognostic factor for both poor overall and recurrence-free survivals in patients with stage II PDA (p = 0.03 and 0.04). Axl silencing by shRNA in pancreatic cancer cell lines, panc-28 and Panc-1, decreased tumor cell migration and invasion and sensitized PDA cells to apoptosis stimuli such as γ-irradiation and serum starvation. In addition, we found that Axl-mediated Akt and NF-κB activation and up regulation of MMP2 were involved in the invasion, migration and survival of PDA cells. Thus, we demonstrate that Axl plays an important role in the development and progression of PDA. Targeting Axl signaling pathway may represent a new approach for the treatment of PDA. To understand the molecular mechanisms of Axl overexpression in PDA, we found that Axl expression was down-regulated by hematopoietic progenitor kinase 1 (HPK1), a newly identified tumor suppressor in PDA. HPK1 is lost in over 95% of PDAs. Restoration of HPK1 in PDA cells down-regulated Axl expression. HPK1-mediated Axl degradation was inhibited by leupeptin, baflomycin A1, and monensin, suggesting that HPK1-mediated Axl degradation was through endocytosis-lysosome pathway. HPK1 interacted with and phosphorylated dynamin, a critical component of endocytosis pathway. Overexpression of dominant negative form of dynamin blocked the HPK1-mediated Axl degradation. Therefore we concluded that HPK1-mediated Axl degradation was through endocytosis-lysosome pathway and loss of HPK1 expression may contribute to Axl overexpression in PDAs.
Resumo:
BACKGROUND Metastasis of colorectal cancer (CRC) is directly linked to patient survival. We previously identified the novel gene Metastasis Associated in Colon Cancer 1 (MACC1) in CRC and demonstrated its importance as metastasis inducer and prognostic biomarker. Here, we investigate the geographic expression pattern of MACC1 in colorectal adenocarcinoma and tumor buds in correlation with clinicopathological and molecular features for improvement of survival prognosis. METHODS We performed geographic MACC1 expression analysis in tumor center, invasive front and tumor buds on whole tissue sections of 187 well-characterized CRCs by immunohistochemistry. MACC1 expression in each geographic zone was analyzed with Mismatch repair (MMR)-status, BRAF/KRAS-mutations and CpG-island methylation. RESULTS MACC1 was significantly overexpressed in tumor tissue as compared to normal mucosa (p < 0.001). Within colorectal adenocarcinomas, a significant increase of MACC1 from tumor center to front (p = 0.0012) was detected. MACC1 was highly overexpressed in 55% tumor budding cells. Independent of geographic location, MACC1 predicted advanced pT and pN-stages, high grade tumor budding, venous and lymphatic invasion (p < 0.05). High MACC1 expression at the invasive front was decisive for prediction of metastasis (p = 0.0223) and poor survival (p = 0.0217). The geographic pattern of MACC1 did not correlate with MMR-status, BRAF/KRAS-mutations or CpG-island methylation. CONCLUSION MACC1 is differentially expressed in CRC. At the invasive front, MACC1 expression predicts best aggressive clinicopathological features, tumor budding, metastasis formation and poor survival outcome.
Resumo:
Cathepsin B (CTSB) is overexpressed in tumors of the lung, prostate, colon, breast, and stomach. However, evidence of primary genomic alterations in the CTSB gene during tumor initiation or progression has been lacking. We have found a novel amplicon at 8p22–23 that results in CTSB overexpression in esophageal adenocarcinoma. Amplified genomic NotI–HinfI fragments were identified by two-dimensional DNA electrophoresis. Two amplified fragments (D4 and D5) were cloned and yielded unique sequences. Using bacterial artificial chromosome clones containing either D4 or D5, fluorescent in situ hybridization defined a single region of amplification involving chromosome bands 8p22–23. We investigated the candidate cancer-related gene CTSB, and potential coamplified genes from this region including farnesyl-diphosphate farnesyltransferase (FDFT1), arylamine N-acetyltransferase (NAT-1), lipoprotein lipase (LPL), and an uncharacterized expressed sequence tag (D8S503). Southern blot analysis of 66 esophageal adenocarcinomas demonstrated only CTSB and FDFT1 were consistently amplified in eight (12.1%) of the tumors. Neither NAT-1 nor LPL were amplified. Northern blot analysis showed overexpression of CTSB and FDFT1 mRNA in all six of the amplified esophageal adenocarcinomas analyzed. CTSB mRNA overexpression also was present in two of six nonamplified tumors analyzed. However, FDFT1 mRNA overexpression without amplification was not observed. Western blot analysis confirmed CTSB protein overexpression in tumor specimens with CTSB mRNA overexpression compared with either normal controls or tumors without mRNA overexpression. Abundant extracellular expression of CTSB protein was found in 29 of 40 (72.5%) of esophageal adenocarcinoma specimens by using immunohistochemical analysis. The finding of an amplicon at 8p22–23 resulting in CTSB gene amplification and overexpression supports an important role for CTSB in esophageal adenocarcinoma and possibly in other tumors.
Resumo:
Lipids can modulate the risk of developing sporadic colorectal adenocarcinoma (SCA), since alterations into lipid metabolism and transport pathways influence directly cholesterol and lipids absorption by colonic cells and indirectly reactive oxygen species (ROS) synthesis in rectum cells due to lipid accumulation. Lipid metabolism is regulated by several proteins APOA1, APOB, APOC3, APOE, CETP, NPY, PON1 and PPARG that could influence both metabolism and transport processes. Is been reported that several common single-nucleotide polymorphisms (SNPs) in these genes could influence their function and/or expression, changing lipid metabolism balance. Thus, genetic changes in those genes can influence SCA development, once the majority of them were never studied in this disease. Furthermore, there are contradictory results between some studied polymorphisms and SCA risk. Thus, the aim of this study was to explore and describe lipid metabolism-associated genes common polymorphisms (APOA1 -75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) status among SCA, and their relationship with SCA risk. Genotyping of common lipid metabolism genes polymorphisms (APOA1 75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) were done by PCR-SSP techniques, from formalin-fixed and paraffin-embedded biopsies of 100 healthy individuals and 68 SCA subjects. Mutant genotypes of APOA1 -75AA (32% vs 12%; p=0.001; OR=3.51; 95% CI 1.59-7.72); APOB 3500AA (7% vs 0%; p=0.01); APOC3 3175GG (19% vs 2%; p=0.0002; OR=11.58; 95% CI 2.52-53.22), APOC3 3206GG (19% vs 0%; p<0.0001); CETP 279AA (12% vs 1%; p=0.003; OR=13.20; 95% CI 1.61-108.17), CETP 451AA (16% vs 0%; p<0.0001); NPY 7CC (15% vs 0%; p<0.0001); PPARG 12GG (10% vs 0%; p=0.001); and heterozygote genotype PON1 192AG (56% vs 22%; p<0.0001; OR=4.49; 95% CI 2.298.80) were found associated with SCA prevalence. While, APOE E4/E4 (0% vs 8%; p=0.02) mutant haplotype seemed to have a protective effect on SCA. Moreover, it also been founded differences between APOB 3500GA, APOC3 3206TG, CETP 279AA genotypes and PPARG 12Ala allele prevalence and tissue localization (colon vs rectum). These findings suggest a positive association between most of common lipid metabolism genes polymorphisms studied and SCA prevalence. Dysregulation of APOA1, APOB, APOC3, CETP, NPY, PON1 and PPARG genes could be associated with lower cholesterol plasma levels and increase ROS among colon and rectum mucosa. Furthermore, these results also support the hypothesis that CRC is related with intestinal lipid absorption decrease and secondary bile acids production increase. Moreover, the polymorphisms studied may play an important role as biomarkers to SCA susceptibility.
Resumo:
Lipids can modulate the risk of developing sporadic colorectal adenocarcinoma (SCA), since alterations into lipid metabolism and transport pathways influence directly cholesterol and lipids absorption by colonic cells and indirectly reactive oxygen species (ROS) synthesis in rectum cells due to lipid accumulation. Lipid metabolism is regulated by several proteins APOA1, APOB, APOC3, APOE, CETP, NPY, PON1 and PPARG that could influence both metabolism and transport processes. Is been reported that several common single-nucleotide polymorphisms (SNPs) in these genes could influence their function and/or expression, changing lipid metabolism balance. Thus, genetic changes in those genes can influence SCA development, once the majority of them were never studied in this disease. Furthermore, there are contradictory results between some studied polymorphisms and SCA risk. Thus, the aim of this study was to explore and describe lipid metabolism-associated genes common polymorphisms (APOA1 -75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) status among SCA, and their relationship with SCA risk. Genotyping of common lipid metabolism genes polymorphisms (APOA1 75 G>A; APOB R3500Q; APOC3 C3175G, APOC3 T3206G; APOE Cys112/158Arg; CETP G279A, CETP R451Q; NPY Leu7Pro; PON1 Q192R; PPARG Pro12Ala) were done by PCR-SSP techniques, from formalin-fixed and paraffin-embedded biopsies of 100 healthy individuals and 68 SCA subjects. Mutant genotypes of APOA1 -75AA (32% vs 12%; p=0.001; OR=3.51; 95% CI 1.59-7.72); APOB 3500AA (7% vs 0%; p=0.01); APOC3 3175GG (19% vs 2%; p=0.0002; OR=11.58; 95% CI 2.52-53.22), APOC3 3206GG (19% vs 0%; p<0.0001); CETP 279AA (12% vs 1%; p=0.003; OR=13.20; 95% CI 1.61-108.17), CETP 451AA (16% vs 0%; p<0.0001); NPY 7CC (15% vs 0%; p<0.0001); PPARG 12GG (10% vs 0%; p=0.001); and heterozygote genotype PON1 192AG (56% vs 22%; p<0.0001; OR=4.49; 95% CI 2.298.80) were found associated with SCA prevalence. While, APOE E4/E4 (0% vs 8%; p=0.02) mutant haplotype seemed to have a protective effect on SCA. Moreover, it also been founded differences between APOB 3500GA, APOC3 3206TG, CETP 279AA genotypes and PPARG 12Ala allele prevalence and tissue localization (colon vs rectum). These findings suggest a positive association between most of common lipid metabolism genes polymorphisms studied and SCA prevalence. Dysregulation of APOA1, APOB, APOC3, CETP, NPY, PON1 and PPARG genes could be associated with lower cholesterol plasma levels and increase ROS among colon and rectum mucosa. Furthermore, these results also support the hypothesis that CRC is related with intestinal lipid absorption decrease and secondary bile acids production increase. Moreover, the polymorphisms studied may play an important role as biomarkers to SCA susceptibility.
Resumo:
Colorectal cancer (CRC) represents the third most common cancer type and the second leading cause of cancer-related death in the western world. CRC results from the accumulation of both acquired genetic and epigenetic changes that transform normal glandular epithelium into adenocarcinoma (Lao and Grady 2011), affecting several genes such as Apc, K-ras, dcc/Smad4 and p53 or DNA mismatch repair genes (Pancione et al. 2012). p38 MAPKs are a subfamily of Serine-Threonine kinases activated by different stimuli that control fundamental cellular processes such as cell growth, proliferation, differentiation, migration and apoptosis (Dhillon et al. 2007, Nebreda and Porras 2000, Wagner and Nebreda 2009). There are four p38 MAPKs isoforms in mammals: α, β, δ and γ. p38α MAPK is ubiquitously expressed and is the most abundant isoform (Cuenda and Rousseau 2007). p38α is involved in the regulation of many cellular functions, among them, cell migration and invasion. In cancer, it can act as either a promoter or a suppressor of tumor growth, playing different roles during tumor progression (del Barco Barrantes and Nebreda 2012). C3G is a guanine nucleotide exchange factor (GEF) mainly for the Ras family members: Rap1 (Gotoh et al. 1995) and R-Ras (Gotoh et al. 1997), but it can also act through GEF independent mechanisms. C3G regulates several cellular functions such as cell death, adhesion, migration and invasion (Radha et al. 2011). In collaboration with Dr. Carmen Guerrero’s group (Centro del Investigación del Cáncer de Salamanca), our group has found a new functional relationship between C3G and p38α MAPK involved in the regulation of cell death in MEFs (Gutierrez-Uzquiza et al. 2010) and in the chronic myeloid leukemia (CML) K562 cell line (Maia et al. 2009). Moreover, C3G and p38α act through a common regulatory pathway to control cell adhesion in K562 cells regulating focal adhesion proteins (Maia et al. 2013)...
Resumo:
Aging is considered one of the main predisposing factors for the development of prostate malignancies. Angiogenesis is fundamental for tumor growth and its inhibition represents a promising therapeutic approach in cancer treatment. Thus, we sought to determine angiogenic responses and the effects of antiangiogenic therapy in the mouse prostate during late life, comparing these findings with the prostatic microenvironment in the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model. Male mice (52 week-old FVB) were submitted to treatments with SU5416 (6 mg/kg; i.p.) and/or TNP-470 (15 mg/kg; s.c.). Finasteride was administered (20 mg/kg; s.c.), alone or in association to both inhibitors. The dorsolateral prostate was collected for VEGF, HIF-1α, FGF-2 and endostatin immunohistochemical and Western Blotting analyses and for microvessel density (MVD) count. Senescence led to increased MVD and VEGF, HIF-1α and FGF-2 protein levels in the prostatic microenvironment, similarly to what was observed in TRAMP mice prostate. The angiogenic process was impaired in all the treated groups, demonstrating significantly decreased MVD. Antiangiogenic and/or finasteride treatments resulted in decreased VEGF and HIF-1α levels, especially following TNP-470 administration, either alone or associated to SU5416. The combination of these agents resulted in increased endostatin levels, regardless of the presence of finasteride. Prostatic angiogenesis stimulation during senescence favored the development of neoplastic lesions, considering the pro-angiogenic microenvironment as a common aspect also observed during cancer progression in TRAMP mice. The combined antiangiogenic therapy was more efficient, leading to enhanced imbalance towards angiogenic inhibition in the organ. Finally, finasteride administration might secondarily upregulate the expression of pro-angiogenic factors, pointing to the harmful effects of this therapy. Prostate 75: 484-499, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
Background: Mucin immunoexpression in adenocarcinoma arising in Barrett's esophagus (BE) may indicate the carcinogenesis pathway. The aim of this study was to evaluate resected specimens of adenocarcinoma in BE for the pattern of mucins and to correlate to the histologic classification. Methods: Specimens were retrospectively collected from thirteen patients who underwent esophageal resection due to adenocarcinoma in BE. Sections were scored for the grade of intestinal metaplasia. The tissues were examined by immunohistochemistry for MUC2 and MUC5AC antibodies. Results: Eleven patients were men. The mean age was 61 years old (varied from 40 to 75 years old). The tumor size had a mean of 4.7 +/- 2.3 cm, and the extension of BE had a mean of 7.7 +/- 1.5 cm. Specialized epithelium with intestinal metaplasia was present in all adjacent mucosas. Immunohistochemistry for MUC2 showed immunoreactivity in goblet cells, while MUC5AC was extensively expressed in the columnar gastric cells, localizing to the surface epithelium and extending to a variable degree into the glandular structures in BE. Tumors were classified according to the mucins in gastric type in 7/13 (MUC5AC positive) and intestinal type in 4/13 (MUC2 positive). Two tumors did not express MUC2 or MUC5AC proteins. The pattern of mucin predominantly expressed in the adjacent epithelium was associated to the mucin expression profile in the tumors, p = 0.047. Conclusion: Barrett's esophagus adenocarcinoma shows either gastric or intestinal type pattern of mucin expression. The two types of tumors developed in Barrett's esophagus may reflect the original cell type involved in the malignant transformation.
Resumo:
The aim of the present study was to examine the impact of polymorphisms in prostate-specific antigen (PSA) and androgen-related genes (AR, CYP17, and CYP19) on prostate cancer (PCa) risk in selected high-risk patients who underwent prostate biopsy. Blood samples and prostate tissues were obtained for DNA analysis. Single-nucleotide polymorphisms in the 50-untranslated regions (UTRs) of the PSA (substitution A > G at position -158) and CYP17 (substitution T > C at 50-UTR) genes were detected by polymerase chain reaction (PCR)-restriction fragment length polymorphism assays. The CAG and TTTA repeats in the AR and CYP19 genes, respectively, were genotyped by PCR-based GeneScan analysis. Patients with the GG genotype of the PSA gene had a higher risk of PCa than those with the AG or AA genotype (OR = 3.79, p = 0.00138). The AA genotype was associated with lower PSA levels (6.44 +/- 1.64 ng/mL) compared with genotypes having at least one G allele (10.44 +/- 10.06 ng/mL) (p = 0.0687, 95% CI - 0.3146 to 8.315, unpaired t-test). The multivariate analysis confirmed the association between PSA levels and PSA genotypes (AA vs. AG+GG; chi(2) = 0.0482) and CYP19 (short alleles homozygous vs. at least one long allele; chi(2) = 0.0110) genotypes. Genetic instability at the AR locus leading to somatic mosaicism was detected in one PCa patient by comparing the length of AR CAG repeats in matched peripheral blood and prostate biopsy cores. Taken together, these findings suggest that the PSA genotype should be a clinically relevant biomarker to predict the PCa risk.
Resumo:
Glypican-3 (GPC3) is a proteoglycan involved in proliferation and cell survival. Several reports demonstrated that GPC3 is downregulated in some tumors, such as breast cancer. Previously, we determined that GPC3 reexpression in the murine mammary adenocarcinoma LM3 cells induced an impairment of their invasive and metastatic capacities, associated with a decrease of their motility and an increase of their cell death. We demonstrated that GPC3 inhibits canonical Wnt signaling, as well as it activates non canonical pathway. Now, we identified signaling pathways responsible for the pro-apoptotic role of GPC3 in LM3 cells. We found for the first time that GPC3 inhibits the PI3K/Akt anti-apoptotic pathway while it stimulates the p38MAPK stress-activated one. We report a concomitant modulation of CDK inhibitors as well as of pro- and anti-apoptotic molecules. Our results provide new clues regarding the mechanism involved in the modulation induced by GPC3 of mammary tumor cell growth and survival.
Resumo:
Fluoxetine (FIX) is a drug commonly used as antidepressant. However, its effects on tumorigenesis remain controversial. Aiming to evaluate the effects of FIX treatment on early malignant changes, we analyzed serotonin (5-HT) metabolism and recognition, aberrant crypt foci (ACF), proliferative process, microvessels, vascular endothelial growth factor (VEGF), and cyclooxygenase-2 (COX-2) expression in colon tissue. Male Wistar rats received a daily FLX-gavage (30 mg kg(-1)) and, a single dose of 1.2 dimethylhydrazine (DMH; i.p., 125 mg kg(-1)). After 6 weeks of FIX-treatment, our results revealed that FIX and nor-fluoxetine (N-FIX) are present in colon tissue, which was related to significant increase in serotonin (5-HT) levels (P < 0.05) possibly through a blockade in SERT mRNA (serotonin reuptake transporter; P < 0.05) resulting in lower 5-hydroxyindoleacetic acid (5-HIAA) levels (P < 0.01) and, 5-HT2C receptor mRNA expressions. FIX-treatment decreased dysplastic ACF development (P < 0.01) and proliferative process (P < 0.001) in epithelia. We observed a significant decrease in the development of malignant microvessels (P < 0.05), VEGF (P < 0.001), and COX-2 expression (P < 0.01). These findings suggest that FIX may have oncostatic effects on carcinogenic colon tissue, probably due to its modulatory activity on 5-HT metabolism and/or its ability to reduce colonic malignant events. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The aim of present study was to verify the in vitro antitumor activity of a ruthenium complex, cis-(dichloro)tetraammineruthenium(III) chloride (cis-[RuCl(2)(NH(3))(4)]Cl) toward different tumor cell lines. The antitumor studies showed that ruthenium(III) complex presents a relevant cytotoxic activity against murine B cell lymphoma (A-20), murine ascitic sarcoma 180 (S-180), human breast adenocarcinoma (SK-BR-3), and human T cell leukemia (Jurkat) cell lines and a very low cytotoxicity toward human peripheral blood mononuclear cells. The ruthenium(III) complex decreased the fraction of tumor cells in G0/G1 and/or G2-M phases, indicating that this compound may act on resting/early entering G0/G1 cells and/or precycling G2-M cells. The cytotoxic activity of a high concentration (2 mg mL(-1)) of cis-[RuCl(2)(NH(3))(4)]Cl toward Jurkat cells correlated with an increased number of annexin V-positive cells and also the presence of DNA fragmentation, suggesting that this compound induces apoptosis in tumor cells. The development of new antineoplastic medications demands adequate knowledge in order to avoid inefficient or toxic treatments. Thus, a mechanistic understanding of how metal complexes achieve their activities is crucial to their clinical success and to the rational design of new compounds with improved potency.
Resumo:
Aberrant crypt foci (ACF) and colon rectal mucosal epithelial cell proliferation have been shown to be increased in patients with colon cancer and have been largely used for early detection of factors that influence colorectal carcinogenesis in rats. Fifty male Wistar rats were randomly divided into 5 groups. The groups G1 to G4 were given 4 injections of the carcinogen 1,2-dimethylhydrazine (DMH). The G2 group received Lychnophora ericoides (LE) extracts for 6 wk. The groups G3 and G4 received LE for 4 wk and 2 wk, respectively, at the postinitiation and initiation phases of colonic carcinogenesis. The group G5 was the control. Forty-two days after the first injections of DMH for the neoplasic induction, we observed a statistically significant decrease in the number of aberrant crypt foci (ACF) and an attenuation of the increase in cell proliferation induced by DMH in all the LE-treated groups. Thus, we concluded that Lychnophora ericoides extracts were effective against the development of cancer. These data suggest that LE has a protective influence on the process of colon carcinogenesis, suppressing both the initiation and the promotion of colonic carcinogenesis.
Resumo:
1 The smooth muscle relaxant responses to the mixed beta(3)-, putative beta(4)-adrenoceptor agonist, (-)-CGP 12177 in rat colon are partially resistant to blockade by the beta(3)-adrenoceptor antagonist SR59230A suggesting involvement of beta(3)- and putative beta(4)-adrenoceptors. We now investigated the function of the putative beta(4)-adrenoceptor and other beta-adrenoceptor subtypes in the colon, oesophagus and ureter of wild-type (WT) and beta(3)-adrenoceptor knockout (beta(3)KO) mice. 2 (-)-Noradrenaline and (-)-adrenaline relaxed KCl (30 mM)-precontracted colon mostly through beta(1)-and beta(3)-adrenoceptors to a similar extent and to a minor extent through beta(2)-adrenoceptors. In colon from beta(3)KO mice, (-)-noradrenaline was as potent as in WT mice but the effects were mediated entirely through beta(1)-adrenoceptors. (-)-CGP 12177 relaxed colon from beta(3)KO mice with 2 fold greater potency than in WT mice. The maintenance of potency for (-)-noradrenaline and increase for (-)-CGP 12177 indicate compensatory increases in beta(1)- and putative beta(4)-adrenoceptor function in beta(3)KO mice. 3 In oesophagi precontracted with 1 mu M carbachol, (-)-noradrenaline caused relaxation mainly through beta(1)-and beta(3)-adrenoceptors. (-)-CGP 12177 (2 mu M) relaxed oesophagi from WT by 61.4+/-5.1% and beta(3)KO by 67.3+/-10.1% of the (-)-isoprenaline-evoked relaxation, consistent with mediation through putative beta(4)-adrenoceptors. 4 In ureter, (-)-CGP 12177 (2 mu M) reduced pacemaker activity by 31.1+/-2.3% in WT and 31.3+/-7.5% in beta(3)KO, consistent with mediation through putative beta(4)-adrenoceptors. 5 Relaxation of mouse colon and oesophagus by catecholamines are mediated through beta(1)- and beta(3)- adrenoceptors in WT. The putative beta(4)-adrenoceptor, which presumably is an atypical state of the beta(1)-adrenoceptor, mediates the effects of(-)-CGP 12177 in colon, oesophagus and ureter.