854 resultados para cloud computing fattibilità
Resumo:
Questo documento affronta le novità ed i vantaggi introdotti nel mondo delle reti di telecomunicazioni dai paradigmi di Software Defined Networking e Network Functions Virtualization, affrontandone prima gli aspetti teorici, per poi applicarne i concetti nella pratica, tramite casi di studio gradualmente più complessi. Tali innovazioni rappresentano un'evoluzione dell'architettura delle reti predisposte alla presenza di più utenti connessi alle risorse da esse offerte, trovando quindi applicazione soprattutto nell'emergente ambiente di Cloud Computing e realizzando in questo modo reti altamente dinamiche e programmabili, tramite la virtualizzazione dei servizi di rete richiesti per l'ottimizzazione dell'utilizzo di risorse. Motivo di tale lavoro è la ricerca di soluzioni ai problemi di staticità e dipendenza, dai fornitori dei nodi intermedi, della rete Internet, i maggiori ostacoli per lo sviluppo delle architetture Cloud. L'obiettivo principale dello studio presentato in questo documento è quello di valutare l'effettiva convenienza dell'applicazione di tali paradigmi nella creazione di reti, controllando in questo modo che le promesse di aumento di autonomia e dinamismo vengano rispettate. Tale scopo viene perseguito attraverso l'implementazione di entrambi i paradigmi SDN e NFV nelle sperimentazioni effettuate sulle reti di livello L2 ed L3 del modello OSI. Il risultato ottenuto da tali casi di studio è infine un'interessante conferma dei vantaggi presentati durante lo studio teorico delle innovazioni in analisi, rendendo esse una possibile soluzione futura alle problematiche attuali delle reti.
Resumo:
Il progresso scientifico e le innovazioni tecnologiche nei campi dell'elettronica, informatica e telecomunicazioni, stanno aprendo la strada a nuove visioni e concetti. L'obiettivo della tesi è quello d'introdurre il modello del Cloud computing per rendere possibile l'attuale visione di Internet of Thing. Nel primo capitolo si introduce Ubiquitous computing come un nuovo modo di vedere i computer, cercando di fare chiarezza sulla sua definizione, la sua nascita e fornendo un breve quadro storico. Nel secondo capitolo viene presentata la visione di Internet of Thing (Internet delle “cose”) che si avvale di concetti e di problematiche in parte già considerate con Ubiquitous computing. Internet of Thing è una visione in cui la rete Internet viene estesa agli oggetti di tutti i giorni. Tracciare la posizione degli oggetti, monitorare pazienti da remoto, rilevare dati ambientali sono solo alcuni esempi. Per realizzare questo tipo di applicazioni le tecnologie wireless sono da considerare necessarie, sebbene questa visione non assuma nessuna specifica tecnologia di comunicazione. Inoltre, anche schede di sviluppo possono agevolare la prototipazione di tali applicazioni. Nel terzo capitolo si presenta Cloud computing come modello di business per utilizzare su richiesta risorse computazionali. Nel capitolo, vengono inizialmente descritte le caratteristiche principali e i vari tipi di modelli di servizio, poi viene argomentato il ruolo che i servizi di Cloud hanno per Internet of Thing. Questo modello permette di accelerare lo sviluppo e la distribuzione di applicazioni di Internet of Thing, mettendo a disposizione capacità di storage e di calcolo per l'elaborazione distribuita dell'enorme quantità di dati prodotta da sensori e dispositivi vari. Infine, nell'ultimo capitolo viene considerato, come esempio pratico, l'integrazione di tecnologie di Cloud computing in una applicazione IoT. Il caso di studio riguarda il monitoraggio remoto dei parametri vitali, considerando Raspberry Pi e la piattaforma e-Health sviluppata da Cooking Hacks per lo sviluppo di un sistema embedded, e utilizzando PubNub come servizio di Cloud per distribuire i dati ottenuti dai sensori. Il caso di studio metterà in evidenza sia i vantaggi sia le eventuali problematiche che possono scaturire utilizzando servizi di Cloud in applicazioni IoT.
Resumo:
Il Cloud Computing permette di utilizzare al meglio le risorse distribuite allo scopo di risolvere problemi di computazione su larga scala, e viene distribuito dai provider all'utente finale sotto forma di servizio. Presentati i diversi modelli di distribuzione dei servizi Cloud, si discutono le varie tipologie di servizi offerti. Efficaci meccanismi di elasticità e scalabilità hanno permesso al Cloud Computing di superare lo scoglio iniziale di utilizzo medio dei server al 10%. L'elasticità (rapid elasticity) è l’abilità di acquisire e rilasciare le risorse di un'infrastruttura Cloud su richiesta, l’abilità di un'applicazione di cambiare le sue dimensione durante il suo tempo di esecuzione; la scalabilità è un prerequisito per ottenere una buona elasticità per il sistema, ed è l'abilità che ha un layer di sostenere carichi di lavoro variabili continuando ad adempiere agli obblighi imposti dallo SLA allocando o disallocando risorse computazionali. Le diverse modalità di scaling e il loro utilizzo determinano la scalabilità e di conseguenza l'elasticità del sistema, e sfruttano la virtualizzazione per poter funzionare. Ciò ha portato notevoli benefici perchè aumenta l'utilizzo dei server, migliora l'efficienza del sistema, e dona flessibilità in caso di errori massimizzando il tempo di funzionamento. Sono stati introdotti due esempi di sistemi elastici basati ovviamente sulla virtualizzazione come Amazon Web Services e Microsoft Azure, che dominano il mercato del Cloud Computing e fanno uso dei più efficenti meccanismi d'elasticità. Il cuore di questo elaborato è l'analisi dell'ampliamento dell'adozione del Cloud Computing in azienda Onit Group srl. L'obiettivo è trattare i punti fondamentali per il Cloud Computing, analizzarli e immagazzinare tutte queste conoscenze per analizzare lo stato attuale del Cloud nell'azienda focalizzando l'attenzione sui vantaggi e sugli svantaggi che un sostanziale ampliamento dell'adozione ai sistemi Cloud poteva apportare.
Resumo:
Mobile devices are now capable of supporting a wide range of applications, many of which demand an ever increasing computational power. To this end, mobile cloud computing (MCC) has been proposed to address the limited computation power, memory, storage, and energy of such devices. An important challenge in MCC is to guarantee seamless discovery of services. To this end, this thesis proposes an architecture that provides user-transparent and low-latency service discovery, as well as automated service selection. Experimental results on a real cloud computing testbed demonstrated that the proposed work outperforms state of-the-art approaches by achieving extremely low discovery delay.
Resumo:
The evolution of the Next Generation Networks, especially the wireless broadband access technologies such as Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX), have increased the number of "all-IP" networks across the world. The enhanced capabilities of these access networks has spearheaded the cloud computing paradigm, where the end-users aim at having the services accessible anytime and anywhere. The services availability is also related with the end-user device, where one of the major constraints is the battery lifetime. Therefore, it is necessary to assess and minimize the energy consumed by the end-user devices, given its significance for the user perceived quality of the cloud computing services. In this paper, an empirical methodology to measure network interfaces energy consumption is proposed. By employing this methodology, an experimental evaluation of energy consumption in three different cloud computing access scenarios (including WiMAX) were performed. The empirical results obtained show the impact of accurate network interface states management and application network level design in the energy consumption. Additionally, the achieved outcomes can be used in further software-based models to optimized energy consumption, and increase the Quality of Experience (QoE) perceived by the end-users.
Resumo:
Cloud computing is a new development that is based on the premise that data and applications are stored centrally and can be accessed through the Internet. Thisarticle sets up a broad analysis of how the emergence of clouds relates to European competition law, network regulation and electronic commerce regulation, which we relate to challenges for the further development of cloud services in Europe: interoperability and data portability between clouds; issues relating to vertical integration between clouds and Internet Service Providers; and potential problems for clouds to operate on the European Internal Market. We find that these issues are not adequately addressed across the legal frameworks that we analyse, and argue for further research into how to better facilitate innovative convergent services such as cloud computing through European policy – especially in light of the ambitious digital agenda that the European Commission has set out.
Resumo:
The development of the Internet has made it possible to transfer data ‘around the globe at the click of a mouse’. Especially fresh business models such as cloud computing, the newest driver to illustrate the speed and breadth of the online environment, allow this data to be processed across national borders on a routine basis. A number of factors cause the Internet to blur the lines between public and private space: Firstly, globalization and the outsourcing of economic actors entrain an ever-growing exchange of personal data. Secondly, the security pressure in the name of the legitimate fight against terrorism opens the access to a significant amount of data for an increasing number of public authorities.And finally,the tools of the digital society accompany everyone at each stage of life by leaving permanent individual and borderless traces in both space and time. Therefore, calls from both the public and private sectors for an international legal framework for privacy and data protection have become louder. Companies such as Google and Facebook have also come under continuous pressure from governments and citizens to reform the use of data. Thus, Google was not alone in calling for the creation of ‘global privacystandards’. Efforts are underway to review established privacy foundation documents. There are similar efforts to look at standards in global approaches to privacy and data protection. The last remarkable steps were the Montreux Declaration, in which the privacycommissioners appealed to the United Nations ‘to prepare a binding legal instrument which clearly sets out in detail the rights to data protection and privacy as enforceable human rights’. This appeal was repeated in 2008 at the 30thinternational conference held in Strasbourg, at the 31stconference 2009 in Madrid and in 2010 at the 32ndconference in Jerusalem. In a globalized world, free data flow has become an everyday need. Thus, the aim of global harmonization should be that it doesn’t make any difference for data users or data subjects whether data processing takes place in one or in several countries. Concern has been expressed that data users might seek to avoid privacy controls by moving their operations to countries which have lower standards in their privacy laws or no such laws at all. To control that risk, some countries have implemented special controls into their domestic law. Again, such controls may interfere with the need for free international data flow. A formula has to be found to make sure that privacy at the international level does not prejudice this principle.
Resumo:
Applying location-focused data protection law within the context of a location-agnostic cloud computing framework is fraught with difficulties. While the Proposed EU Data Protection Regulation has introduced a lot of changes to the current data protection framework, the complexities of data processing in the cloud involve various layers and intermediaries of actors that have not been properly addressed. This leaves some gaps in the regulation when analyzed in cloud scenarios. This paper gives a brief overview of the relevant provisions of the regulation that will have an impact on cloud transactions and addresses the missing links. It is hoped that these loopholes will be reconsidered before the final version of the law is passed in order to avoid unintended consequences.
Resumo:
Recent advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing environmental conditions and number of users, application performance might suffer, leading to Service Level Agreement (SLA) violations and inefficient use of hardware resources. We introduce a system for controlling the complexity of scaling applications composed of multiple services using mechanisms based on fulfillment of SLAs. We present how service monitoring information can be used in conjunction with service level objectives, predictions, and correlations between performance indicators for optimizing the allocation of services belonging to distributed applications. We validate our models using experiments and simulations involving a distributed enterprise information system. We show how discovering correlations between application performance indicators can be used as a basis for creating refined service level objectives, which can then be used for scaling the application and improving the overall application's performance under similar conditions.
Resumo:
Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.
Resumo:
Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.
Resumo:
Managing large medical image collections is an increasingly demanding important issue in many hospitals and other medical settings. A huge amount of this information is daily generated, which requires robust and agile systems. In this paper we present a distributed multi-agent system capable of managing very large medical image datasets. In this approach, agents extract low-level information from images and store them in a data structure implemented in a relational database. The data structure can also store semantic information related to images and particular regions. A distinctive aspect of our work is that a single image can be divided so that the resultant sub-images can be stored and managed separately by different agents to improve performance in data accessing and processing. The system also offers the possibility of applying some region-based operations and filters on images, facilitating image classification. These operations can be performed directly on data structures in the database.
Resumo:
En el campo de la biomedicina se genera una inmensa cantidad de imágenes diariamente. Para administrarlas es necesaria la creación de sistemas informáticos robustos y ágiles, que necesitan gran cantidad de recursos computacionales. El presente artículo presenta un servicio de cloud computing capaz de manejar grandes colecciones de imágenes biomédicas. Gracias a este servicio organizaciones y usuarios podrían administrar sus imágenes biomédicas sin necesidad de poseer grandes recursos informáticos. El servicio usa un sistema distribuido multi agente donde las imágenes son procesadas y se extraen y almacenan en una estructura de datos las regiones que contiene junto con sus características. Una característica novedosa del sistema es que una misma imagen puede ser dividida, y las sub-imágenes resultantes pueden ser almacenadas por separado por distintos agentes. Esta característica ayuda a mejorar el rendimiento del sistema a la hora de buscar y recuperar las imágenes almacenadas.