992 resultados para climate feedback
Resumo:
Climate change is amplified in the Arctic region. Arctic amplification has been found in past warm1 and glacial2 periods, as well as in historical observations3, 4 and climate model experiments5, 6. Feedback effects associated with temperature, water vapour and clouds have been suggested to contribute to amplified warming in the Arctic, but the surface albedo feedback—the increase in surface absorption of solar radiation when snow and ice retreat—is often cited as the main contributor7, 8, 9, 10. However, Arctic amplification is also found in models without changes in snow and ice cover11, 12. Here we analyse climate model simulations from the Coupled Model Intercomparison Project Phase 5 archive to quantify the contributions of the various feedbacks. We find that in the simulations, the largest contribution to Arctic amplification comes from a temperature feedbacks: as the surface warms, more energy is radiated back to space in low latitudes, compared with the Arctic. This effect can be attributed to both the different vertical structure of the warming in high and low latitudes, and a smaller increase in emitted blackbody radiation per unit warming at colder temperatures. We find that the surface albedo feedback is the second main contributor to Arctic amplification and that other contributions are substantially smaller or even opposeArctic amplification.
Resumo:
In contrast to prior studies showing a positive lapse-rate feedback associated with the Arctic inversion, Boé et al. reported that strong present-day Arctic temperature inversions are associated with stronger negative longwave feedbacks and thus reduced Arctic amplification in the model ensemble from phase 3 of the Coupled Model Intercomparison Project (CMIP3). A permutation test reveals that the relation between longwave feedbacks and inversion strength is an artifact of statistical self-correlation and that shortwave feedbacks have a stronger correlation with intermodel spread. The present comment concludes that the conventional understanding of a positive lapse-rate feedback associated with the Arctic inversion is consistent with the CMIP3 model ensemble.
Resumo:
Aimed at reducing deficiencies in representing the Madden-Julian oscillation (MJO) in general circulation models (GCMs), a global model evaluation project on vertical structure and physical processes of the MJO was coordinated. In this paper, results from the climate simulation component of this project are reported. It is shown that the MJO remains a great challenge in these latest generation GCMs. The systematic eastward propagation of the MJO is only well simulated in about one-fourth of the total participating models. The observed vertical westward tilt with altitude of the MJO is well simulated in good MJO models, but not in the poor ones. Damped Kelvin wave responses to the east of convection in the lower troposphere could be responsible for the missing MJO preconditioning process in these poor MJO models. Several process-oriented diagnostics were conducted to discriminate key processes for realistic MJO simulations. While large-scale rainfall partition and low-level mean zonal winds over the Indo-Pacific in a model are not found to be closely associated with its MJO skill, two metrics, including the low-level relative humidity difference between high and low rain events and seasonal mean gross moist stability, exhibit statistically significant correlations with the MJO performance. It is further indicated that increased cloud-radiative feedback tends to be associated with reduced amplitude of intraseasonal variability, which is incompatible with the radiative instability theory previously proposed for the MJO. Results in this study confirm that inclusion of air-sea interaction can lead to significant improvement in simulating the MJO.
Resumo:
The last interglaciation (substage 5e) provides an opportunity to examine the effects of extreme orbital changes on regional climates. We have made two atmospheric general circulation model experiments: P+T+ approximated the northern hemisphere seasonality maximum near the beginning of 5e; P-T- approximated the minimum near the end of 5e. Simulated regional climate changes have been translated into biome changes using a physiologically based model of global vegetation types. Major climatic and vegetational changes were simulated for the northern hemisphere extratropics, due to radiational effects that were both amplified and modified by atmospheric circulation changes and sea-ice feedback. P+T+ showed mid-continental summers up to 8°C warmer than present. Mid-latitude winters were 2-4°C cooler than present but in the Arctic, summer warmth reduced sea-ice extent and thickness, producing winters 2-8°C warmer than present. The tundra and taiga biomes were displaced poleward, while warm-summer steppes expanded in the mid latitudes due to drought. P-T- showed summers up to 5°C cooler than present, especially in mid latitudes. Sea ice and snowpack were thicker and lasted longer; polar desert, tundra, and taiga biomes were displaced equatorward, while cool-summer steppes and semideserts expanded due to the cooling. A slight winter warming in mid latitudes, however, caused warm-temperate evergreen forests and scrub to expand poleward. Such qualitative contrasts in the direction of climate and vegetation change during 5e should be identifiable in the paleorecord
Resumo:
The high computational cost of calculating the radiative heating rates in numerical weather prediction (NWP) and climate models requires that calculations are made infrequently, leading to poor sampling of the fast-changing cloud field and a poor representation of the feedback that would occur. This paper presents two related schemes for improving the temporal sampling of the cloud field. Firstly, the ‘split time-stepping’ scheme takes advantage of the independent nature of the monochromatic calculations of the ‘correlated-k’ method to split the calculation into gaseous absorption terms that are highly dependent on changes in cloud (the optically thin terms) and those that are not (optically thick). The small number of optically thin terms can then be calculated more often to capture changes in the grey absorption and scattering associated with cloud droplets and ice crystals. Secondly, the ‘incremental time-stepping’ scheme uses a simple radiative transfer calculation using only one or two monochromatic calculations representing the optically thin part of the atmospheric spectrum. These are found to be sufficient to represent the heating rate increments caused by changes in the cloud field, which can then be added to the last full calculation of the radiation code. We test these schemes in an operational forecast model configuration and find a significant improvement is achieved, for a small computational cost, over the current scheme employed at the Met Office. The ‘incremental time-stepping’ scheme is recommended for operational use, along with a new scheme to correct the surface fluxes for the change in solar zenith angle between radiation calculations.
Resumo:
The North Atlantic Ocean subpolar gyre (NA SPG) is an important region for initialising decadal climate forecasts. Climate model simulations and palaeo climate reconstructions have indicated that this region could also exhibit large, internally generated variability on decadal timescales. Understanding these modes of variability, their consistency across models, and the conditions in which they exist, is clearly important for improving the skill of decadal predictions — particularly when these predictions are made with the same underlying climate models. Here we describe and analyse a mode of internal variability in the NA SPG in a state-of-the-art, high resolution, coupled climate model. This mode has a period of 17 years and explains 15–30% of the annual variance in related ocean indices. It arises due to the advection of heat content anomalies around the NA SPG. Anomalous circulation drives the variability in the southern half of the NA SPG, whilst mean circulation and anomalous temperatures are important in the northern half. A negative feedback between Labrador Sea temperatures/densities and those in the North Atlantic Current is identified, which allows for the phase reversal. The atmosphere is found to act as a positive feedback on to this mode via the North Atlantic Oscillation which itself exhibits a spectral peak at 17 years. Decadal ocean density changes associated with this mode are driven by variations in temperature, rather than salinity — a point which models often disagree on and which we suggest may affect the veracity of the underlying assumptions of anomaly-assimilating decadal prediction methodologies.
Resumo:
For users of climate services, the ability to quickly determine the datasets that best fit one's needs would be invaluable. The volume, variety and complexity of climate data makes this judgment difficult. The ambition of CHARMe ("Characterization of metadata to enable high-quality climate services") is to give a wider interdisciplinary community access to a range of supporting information, such as journal articles, technical reports or feedback on previous applications of the data. The capture and discovery of this "commentary" information, often created by data users rather than data providers, and currently not linked to the data themselves, has not been significantly addressed previously. CHARMe applies the principles of Linked Data and open web standards to associate, record, search and publish user-derived annotations in a way that can be read both by users and automated systems. Tools have been developed within the CHARMe project that enable annotation capability for data delivery systems already in wide use for discovering climate data. In addition, the project has developed advanced tools for exploring data and commentary in innovative ways, including an interactive data explorer and comparator ("CHARMe Maps") and a tool for correlating climate time series with external "significant events" (e.g. instrument failures or large volcanic eruptions) that affect the data quality. Although the project focuses on climate science, the concepts are general and could be applied to other fields. All CHARMe system software is open-source, released under a liberal licence, permitting future projects to re-use the source code as they wish.
Resumo:
There are some long-established biases in atmospheric models that originate from the representation of tropical convection. Previously, it has been difficult to separate cause and effect because errors are often the result of a number of interacting biases. Recently, researchers have gained the ability to run multiyear global climate model simulations with grid spacings small enough to switch the convective parameterization off, which permits the convection to develop explicitly. There are clear improvements to the initiation of convective storms and the diurnal cycle of rainfall in the convection-permitting simulations, which enables a new process-study approach to model bias identification. In this study, multiyear global atmosphere-only climate simulations with and without convective parameterization are undertaken with the Met Office Unified Model and are analyzed over the Maritime Continent region, where convergence from sea-breeze circulations is key for convection initiation. The analysis shows that, although the simulation with parameterized convection is able to reproduce the key rain-forming sea-breeze circulation, the parameterization is not able to respond realistically to the circulation. A feedback of errors also occurs: the convective parameterization causes rain to fall in the early morning, which cools and wets the boundary layer, reducing the land–sea temperature contrast and weakening the sea breeze. This is, however, an effect of the convective bias, rather than a cause of it. Improvements to how and when convection schemes trigger convection will improve both the timing and location of tropical rainfall and representation of sea-breeze circulations.
Resumo:
Increases in cloud optical depth and liquid water path (LWP) are robust features of global warming model simulations in high latitudes, yielding a negative shortwave cloud feedback, but the mechanisms are still uncertain. We assess the importance of microphysical processes for the negative optical depth feedback by perturbing temperature in the microphysics schemes of two aquaplanet models, both of which have separate prognostic equations for liquid water and ice. We find that most of the LWP increase with warming is caused by a suppression of ice microphysical processes in mixed-phase clouds, resulting in reduced conversion efficiencies of liquid water to ice and precipitation. Perturbing the temperature-dependent phase partitioning of convective condensate also yields a small LWP increase. Together, the perturbations in large-scale microphysics and convective condensate partitioning explain more than two-thirds of the LWP response relative to a reference case with increased SSTs, and capture all of the vertical structure of the liquid water response. In support of these findings, we show the existence of a very robust positive relationship between monthly-mean LWP and temperature in CMIP5 models and observations in mixed-phase cloud regions only. In models, the historical LWP sensitivity to temperature is a good predictor of the forced global warming response poleward of about 45°, although models appear to overestimate the LWP response to warming compared to observations. We conclude that in climate models, the suppression of ice-phase microphysical processes that deplete cloud liquid water is a key driver of the LWP increase with warming and of the associated negative shortwave cloud feedback.
Resumo:
We review the effects of dynamical variability on clouds and radiation in observations and models and discuss their implications for cloud feedbacks. Jet shifts produce robust meridional dipoles in upper-level clouds and longwave cloud-radiative effect (CRE), but low-level clouds, which do not simply shift with the jet, dominate the shortwave CRE. Because the effect of jet variability on CRE is relatively small, future poleward jet shifts with global warming are only a second-order contribution to the total CRE changes around the midlatitudes, suggesting a dominant role for thermodynamic effects. This implies that constraining the dynamical response is unlikely to reduce the uncertainty in extratropical cloud feedback. However, we argue that uncertainty in the cloud-radiative response does affect the atmospheric circulation response to global warming, by modulating patterns of diabatic forcing. How cloud feedbacks can affect the dynamical response to global warming is an important topic of future research.
Resumo:
We quantify the effect of the snow-albedo feedback on Swiss spring temperature trends using daily temperature and snow depth measurements from six station pairs for the period 1961–2011. We show that the daily mean 2-m temperature of a spring day without snow cover is on average 0.4 °C warmer than one with snow cover at the same location. This estimate is comparable with estimates from climate modelling studies. Caused by the decreases in snow pack, the snow-albedo feedback amplifies observed temperature trends in spring. The influence is small and confined to areas around the upward-moving snow line in spring and early summer. For the 1961–2011 period, the related temperature trend increases are in the order of 3–7 % of the total observed trend.
Resumo:
We analyse the ability of CMIP3 and CMIP5 coupled ocean–atmosphere general circulation models (CGCMs) to simulate the tropical Pacific mean state and El Niño-Southern Oscillation (ENSO). The CMIP5 multi-model ensemble displays an encouraging 30 % reduction of the pervasive cold bias in the western Pacific, but no quantum leap in ENSO performance compared to CMIP3. CMIP3 and CMIP5 can thus be considered as one large ensemble (CMIP3 + CMIP5) for multi-model ENSO analysis. The too large diversity in CMIP3 ENSO amplitude is however reduced by a factor of two in CMIP5 and the ENSO life cycle (location of surface temperature anomalies, seasonal phase locking) is modestly improved. Other fundamental ENSO characteristics such as central Pacific precipitation anomalies however remain poorly represented. The sea surface temperature (SST)-latent heat flux feedback is slightly improved in the CMIP5 ensemble but the wind-SST feedback is still underestimated by 20–50 % and the shortwave-SST feedbacks remain underestimated by a factor of two. The improvement in ENSO amplitudes might therefore result from error compensations. The ability of CMIP models to simulate the SST-shortwave feedback, a major source of erroneous ENSO in CGCMs, is further detailed. In observations, this feedback is strongly nonlinear because the real atmosphere switches from subsident (positive feedback) to convective (negative feedback) regimes under the effect of seasonal and interannual variations. Only one-third of CMIP3 + CMIP5 models reproduce this regime shift, with the other models remaining locked in one of the two regimes. The modelled shortwave feedback nonlinearity increases with ENSO amplitude and the amplitude of this feedback in the spring strongly relates with the models ability to simulate ENSO phase locking. In a final stage, a subset of metrics is proposed in order to synthesize the ability of each CMIP3 and CMIP5 models to simulate ENSO main characteristics and key atmospheric feedbacks.
Resumo:
The climates of the mid-Holocene (MH), 6,000 years ago, and of the Last Glacial Maximum (LGM), 21,000 years ago, have extensively been simulated, in particular in the framework of the Palaeoclimate Modelling Intercomparion Project. These periods are well documented by paleo-records, which can be used for evaluating model results for climates different from the present one. Here, we present new simulations of the MH and the LGM climates obtained with the IPSL_CM5A model and compare them to our previous results obtained with the IPSL_CM4 model. Compared to IPSL_CM4, IPSL_CM5A includes two new features: the interactive representation of the plant phenology and marine biogeochemistry. But one of the most important differences between these models is the latitudinal resolution and vertical domain of their atmospheric component, which have been improved in IPSL_CM5A and results in a better representation of the mid-latitude jet-streams. The Asian monsoon’s representation is also substantially improved. The global average mean annual temperature simulated for the pre-industrial (PI) period is colder in IPSL_CM5A than in IPSL_CM4 but their climate sensitivity to a CO2 doubling is similar. Here we show that these differences in the simulated PI climate have an impact on the simulated MH and LGM climatic anomalies. The larger cooling response to LGM boundary conditions in IPSL_CM5A appears to be mainly due to differences between the PMIP3 and PMIP2 boundary conditions, as shown by a short wave radiative forcing/feedback analysis based on a simplified perturbation method. It is found that the sensitivity computed from the LGM climate is lower than that computed from 2 × CO2 simulations, confirming previous studies based on different models. For the MH, the Asian monsoon, stronger in the IPSL_CM5A PI simulation, is also more sensitive to the insolation changes. The African monsoon is also further amplified in IPSL_CM5A due to the impact of the interactive phenology. Finally the changes in variability for both models and for MH and LGM are presented taking the example of the El-Niño Southern Oscillation (ENSO), which is very different in the PI simulations. ENSO variability is damped in both model versions at the MH, whereas inconsistent responses are found between the two versions for the LGM. Part 2 of this paper examines whether these differences between IPSL_CM4 and IPSL_CM5A can be distinguished when comparing those results to palaeo-climatic reconstructions and investigates new approaches for model-data comparisons made possible by the inclusion of new components in IPSL_CM5A.
Resumo:
Human population growth and resource use, mediated by changes in climate, land use, and water use, increasingly impact biodiversity and ecosystem services provision. However, impacts of these drivers on biodiversity and ecosystem services are rarely analyzed simultaneously and remain largely unknown. An emerging question is how science can improve the understanding of change in biodiversity and ecosystem service delivery and of potential feedback mechanisms of adaptive governance. We analyzed past and future change in drivers in south-central Sweden. We used the analysis to identify main research challenges and outline important research tasks. Since the 19th century, our study area has experienced substantial and interlinked changes; a 1.6°C temperature increase, rapid population growth, urbanization, and massive changes in land use and water use. Considerable future changes are also projected until the mid-21st century. However, little is known about the impacts on biodiversity and ecosystem services so far, and this in turn hampers future projections of such effects. Therefore, we urge scientists to explore interdisciplinary approaches designed to investigate change in multiple drivers, underlying mechanisms, and interactions over time, including assessment and analysis of matching-scale data from several disciplines. Such a perspective is needed for science to contribute to adaptive governance by constantly improving the understanding of linked change complexities and their impacts.
Resumo:
Includes bibliography