896 resultados para class II
Resumo:
The aim of this study was to assess the changes in inclination of the maxillary second (M2) and third (M3) molars after orthodontic treatment of Class II Division 1 malocclusion with extraction of maxillary first molars.
Resumo:
Allograft acceptance and tolerance can be achieved by different approaches including inhibition of effector T cell responses through CD28-dependent costimulatory blockade and induction of peripheral regulatory T cells (Tregs). The observation that Tregs rely upon CD28-dependent signals for development and peripheral expansion, raises the intriguing possibility of a counterproductive consequence of CTLA4-Ig administration on tolerance induction. We have investigated the possible negative effect of CTLA4-Ig on Treg-mediated tolerance induction using a mouse model of single MHC class II-mismatched skin grafts in which long-term acceptance was achieved by short-term administration of IL-2/anti-IL-2 complex. CTLA4-Ig treatment was found to abolish Treg-dependent acceptance in this model, restoring skin allograft rejection and Th1 alloreactivity. CTLA4-Ig inhibited IL-2-driven Treg expansion, and prevented in particular the occurrence of ICOS(+) Tregs endowed with potent suppressive capacities. Restoring CD28 signaling was sufficient to counteract the deleterious effect of CTLA4-Ig on Treg expansion and functionality, in keeping with the hypothesis that costimulatory blockade inhibits Treg expansion and function by limiting the delivery of essential CD28-dependent signals. Inhibition of regulatory T cell function should therefore be taken into account when designing tolerance protocols based on costimulatory blockade. Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons
Resumo:
To compare the performance of LFpen (DIAGNOdent pen) with two different wedge-shaped tips to conventional bitewing radiography (BW) for detecting proximal secondary caries at the cervical margin of amalgam restorations in vitro.
Resumo:
Major histocompatibility complex (MHC) antigen-presenting genes are the most variable loci in vertebrate genomes. Host-parasite co-evolution is assumed to maintain the excessive polymorphism in the MHC loci. However, the molecular mechanisms underlying the striking diversity in the MHC remain contentious. The extent to which recombination contributes to the diversity at MHC loci in natural populations is still controversial, and there have been only few comparative studies that make quantitative estimates of recombination rates. In this study, we performed a comparative analysis for 15 different ungulates species to estimate the population recombination rate, and to quantify levels of selection. As expected for all species, we observed signatures of strong positive selection, and identified individual residues experiencing selection that were congruent with those constituting the peptide-binding region of the human DRB gene. However, in addition for each species, we also observed recombination rates that were significantly different from zero on the basis of likelihood-permutation tests, and in other non-quantitative analyses. Patterns of synonymous and non-synonymous sequence diversity were consistent with differing demographic histories between species, but recent simulation studies by other authors suggest inference of selection and recombination is likely to be robust to such deviations from standard models. If high rates of recombination are common in MHC genes of other taxa, re-evaluation of many inference-based phylogenetic analyses of MHC loci, such as estimates of the divergence time of alleles and trans-specific polymorphism, may be required.
Resumo:
Class II cavities were prepared in extracted lower molars filled and cured in three 2-mm increments using a metal matrix. Three composites (Spectrum TPH A4, Ceram X mono M7 and Tetric Ceram A4) were cured with both the SmartLite PS LED LCU and the Spectrum 800 continuous cure halogen LCU using curing cycles of 10, 20 and 40 seconds. Each increment was cured before adding the next. After a seven-day incubation period, the composite specimens were removed from the teeth, embedded in self-curing resin and ground to half the orofacial width. Knoop microhardness was determined 100, 200, 500, 1000, 1500, 2500, 3500, 4500 and 5500 microm from the occlusal surface at a distance of 150 microm and 1000 microm from the metal matrix. The total degree of polymerization of a composite specimen for any given curing time and curing light was determined by calculating the area under the hardness curve. Hardness values 150 microm from the metal matrix never reached maximum values and were generally lower than those 1000 microm from the matrix. The hardest composite was usually encountered between 200 microm and 1000 microm from the occlusal surface. For every composite-curing time combination, there was an increase in microhardness at the top of each increment (measurements at 500, 2500 and 4500 microm) and a decrease towards the bottom of each increment (measurements at 1500, 3500 and 5500 microm). Longer curing times were usually combined with harder composite samples. Spectrum TPH composite was the only composite showing a satisfactory degree of polymerization for all three curing times and both LCUs. Multiple linear regression showed that only the curing time (p < 0.001) and composite material (p < 0.001) had a significant association with the degree of polymerization. The degree of polymerization achieved by the LED LCU was not significantly different from that achieved by the halogen LCU (p = 0.54).
Resumo:
A laboratory study was performed to assess the influence of beveling the margins of cavities and the effects on marginal adaptation of the application of ultrasound during setting and initial light curing. After minimal access cavities had been prepared with an 80 microm diamond bur, 80 box-only Class II cavities were prepared mesially and distally in 40 extracted human molars using four different oscillating diamond coated instruments: (A) a U-shaped PCS insert as the non-beveled control (EMS), (B) Bevelshape (Intensiv), (C) SonicSys (KaVo) and (D) SuperPrep (KaVo). In groups B-D, the time taken for additional bevel finishing was measured. The cavities were filled with a hybrid composite material in three increments. Ultrasound was also applied to one cavity per tooth before and during initial light curing (10 seconds). The specimens were subjected to thermomechanical stress in a computer-controlled masticator device. Marginal quality was assessed by scanning electron microscopy and the results were compared statistically. The additional time required for finishing was B > D > C (p < or = 0.05). In all groups, thermomechanical loading resulted in a decrease in marginal quality. Beveling resulted in higher values for "continuous" margins compared with that of the unbeveled controls. The latter showed better marginal quality at the axial walls when ultrasound was used. Beveling seems essential for good marginal adaptation but requires more preparation time. The use of ultrasonic vibrations may improve the marginal quality of unbeveled fillings and warrants further investigation.
Resumo:
Throughout the years, various treatment modalities have been presented for the treatment of Class II Division 1 malocclusions. The goal of this paper is to present a treatment approach that involves the extraction of the maxillary first molars followed by use of fixed appliances with low-friction brackets. This treatment approach has proven to be an efficient treatment modality for Class II Division 1 malocclusions, especially with noncompliant patients.
Resumo:
INTRODUCTION Our objective was to investigate potential associations between maxillary sinus floor extension and inclination of maxillary second premolars and second molars in patients with Class II Division 1 malocclusion whose orthodontic treatment included maxillary first molar extractions. METHODS The records of 37 patients (18 boys, 19 girls; mean age, 13.2 years; SD, 1.62 years) treated between 1998 and 2004 by 1 orthodontist with full Begg appliances were used in this study. Inclusion criteria were white patients with Class II Division 1 malocclusion, sagittal overjet of ≥4 mm, treatment plan including extraction of the maxillary first permanent molars, no missing teeth, and no agenesis. Maxillary posterior tooth inclination and lower maxillary sinus area in relation to the palatal plane were measured on lateral cephalograms at 3 time points: at the start and end of treatment, and on average 2.5 years posttreatment. Data were analyzed for the second premolar and second molar inclinations by using mixed linear models. RESULTS The analysis showed that the second molar inclination angle decreased by 7° after orthodontic treatment, compared with pretreatment values, and by 11.5° at the latest follow-up, compared with pretreatment. There was evidence that maxillary sinus volume was negatively correlated with second molar inclination angle; the greater the volume, the smaller the inclination angle. For premolars, inclination increased by 15.4° after orthodontic treatment compared with pretreatment, and by 8.1° at the latest follow-up compared with baseline. The volume of the maxillary sinus was not associated with premolar inclination. CONCLUSIONS We found evidence of an association between maxillary second molar inclination and surface area of the lower sinus in patients treated with maxillary first molar extractions. Clinicians who undertake such an extraction scheme in Class II patients should be aware of this potential association and consider appropriate biomechanics to control root uprighting.
Resumo:
AIM To compare dentoskeletal and soft tissue treatment effects of two alternative Class II division 1 treatment modalities (maxillary first permanent molar extraction versus Herbst appliance). METHODS One-hundred-fifty-four Class II division 1 patients that had either been treated with extractions of the upper first molars and a lightwire multibracket (MB) appliance (n = 79; 38 girls, 41 boys) or non-extraction by means of a Herbst-MB appliance (n = 75; 35 girls, 40 boys). The groups were matched on age and sex. The average age at the start of treatment was 12.7 years for the extraction and for 13.0 years for the Herbst group. Pretreatment (T1) and posttreatment (T2) lateral cephalograms were retrospectively analyzed using a standard cephalometric analysis and the sagittal occlusal analysis according to Pancherz. RESULTS The SNA decrease was 1.10° (p = 0.001) more pronounced in the extraction group, the SNB angle increased 1.49° more in the Herbst group (p = 0.000). In the extraction group, a decrease in SNB angle (0.49°) was observed. The soft tissue profile convexity (N-Sn-Pog) decreased in both groups, which was 0.78° more (n. s.) pronounced in the Herbst group. The nasolabial angle increased significantly more (+ 2.33°, p = 0.025) in the extraction group. The mechanism of overjet correction in the extraction group was predominantly dental (65% dental and 35% skeletal changes), while in the Herbst group it was predominantly skeletal (58% skeletal and 42% dental changes) in origin. CONCLUSION Both treatment methods were successful and led to a correction of the Class II division 1 malocclusion. Whereas for upper first molar extraction treatment more dental and maxillary effects can be expected, in case of Herbst treatment skeletal and mandibular effects prevail.
Resumo:
Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD) and involve CD4(+) T cells, which are activated by major histocompatibility complex class II (MHCII) molecules on antigen-presenting cells (APCs). However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC) affects CD4(+) T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL)-10 receptor-blocking antibodies (anti-IL10R mAb). To assess the role of interferon (IFN)-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+) T-helper type (Th)1 cells - but not group 3 innate lymphoid cells (ILCs) or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+) T cells and forkhead box P3 (FoxP3)(+) regulatory T (Treg) cells. IFN-γ produced mainly by CD4(+) T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.
Resumo:
The invariant chain associated with the major histocompatibility complex (MHC) class II molecules is a non-polymorphic glycoprotein implicated in antigen processing and class II molecule intracellular transport. Class II molecules and invariant chain (In) are expressed primarily by B lymphocytes and antigen-presenting cells such as macrophages and can be induced by interferon gamma (IFN-$\gamma$) in a variety of cell types such as endothelial cells, fibroblasts, and astrocytes. In this study the cis-acting sequences involved in the constitutive, tissue-specific, and IFN-$\gamma$ induced expression of the human In gene were investigated and nuclear proteins which specifically bound these sequences were identified.^ To define promoter sequences involved in the regulation of the human In gene, 790 bp 5$\sp\prime$ to the initiation of transcription were subcloned upstream of the gene encoding chloramphenicol acetyl transferase (CAT). Transfection of this construct into In expressing and non-expressing cell lines demonstrated that this 790 bp In promoter sequence conferred tissue specificity to the CAT gene. Deletion mutants were created in the promoter to identify sequences important for transcription. Three regulatory regions were identified $-$396 to $-$241, $-$241 to $-$216, and $-$216 to $-$165 bp 5$\sp\prime$ to the cap site. Transfection into a human glioblastoma cell line, U-373 MG, and treatment with IFN-$\gamma$, demonstrated that this 5$\sp\prime$ region is responsive to IFN-$\gamma$. An IFN-$\gamma$ response element was sublocalized to the region $-$120 to $-$61 bp. This region contains homology to the interferon-stimulated response element (ISRE) identified in other IFN responsive genes. IFN-$\gamma$ induces a sequence-specific DNA binding factor which binds to an oligonucleotide corresponding to $-$107 to $-$79 bp of the In promoter. This factor also binds to an oligonucleotide corresponding to $-$91 to $-$62 of the interferon-$\beta$ gene promoter, suggesting this factor may be member of the IRF-1/ISGF2, IRF-2, ICSBP family of ISRE binding proteins. A transcriptional enhancer was identified in the first intron of the In gene. This element, located in a 2.6 kb BamHI/PstI fragment, enhances the IFN-$\gamma$ response of the promoter in U-373 MG. The majority of the In enhancer activity was sublocalized to a 550 bp region $\sim$1.6 kb downstream of the In transcriptional start site. ^
Resumo:
The goal of this study was to determine the frequency of HLA class II antigen expression in colorectal carcinoma (CRC) tumors, its association with the clinical course of the disease, and the underlying mechanism(s). Two tissue microarrays constructed with 220 and 778 CRC tumors were stained with HLA-DR, DQ, and DP antigen-specific monoclonal antibody LGII-612.14, using the immunoperoxidase staining technique. The immunohistochemical staining results were correlated with the clinical course of the disease. The functional role of HLA class II antigens expressed on CRC cells was analyzed by investigating their in vitro interactions with immune cells. HLA class II antigens were expressed in about 25% of the 220 and 21% of the 778 tumors analyzed with an overall frequency of 23%. HLA class II antigens were detected in 19% of colorectal adenomas. Importantly, the percentage of stained cells and the staining intensity were significantly lower than those detected in CRC tumors. However, HLA class II antigen staining was weakly detected only in 5.4% of 37 normal mucosa tissues. HLA class II antigen expression was associated with a favorable clinical course of the disease. In vitro stimulation with interferon gamma (IFNγ) induced HLA class II antigen expression on two of the four CRC cell lines tested. HLA class II antigen expression on CRC cells triggered interleukin-1β (IL-1β) production by resting monocytes. HLA class II antigen expression in CRC tumors is a favorable prognostic marker. This association may reflect stimulation of IL-1β production by monocytes.
Resumo:
OBJECTIVE To assess the maxillary second molar (M2) and third molar (M3) inclination following orthodontic treatment of Class II subdivision malocclusion with unilateral maxillary first molar (M1) extraction. MATERIALS AND METHODS Panoramic radiographs of 21 Class II subdivision adolescents (eight boys, 13 girls; mean age, 12.8 years; standard deviation, 1.7 years) before treatment, after treatment with extraction of one maxillary first molar and Begg appliances and after at least 1.8 years in retention were retrospectively collected from a private practice. M2 and M3 inclination angles (M2/ITP, M2/IOP, M3/ITP, M3/IOP), constructed by intertuberosity (ITP) and interorbital planes (IOP), were calculated for the extracted and nonextracted segments. Random effects regression analysis was performed to evaluate the effect on the molar angulation of extraction, time, and gender after adjusting for baseline measurements. RESULTS Time and extraction status were significant predictors for M2 angulation. M2/ITP and M2/IOP decreased by 4.04 (95% confidence interval [CI]: -6.93, 1.16; P = .001) and 3.67 (95% CI: -6.76, -0.58; P = .020) in the extraction group compared to the nonextraction group after adjusting for time and gender. The adjusted analysis showed that extraction was the only predictor for M3 angulation that reached statistical significance. M3 mesial inclination increased by 7.38° (95% CI: -11.2, -3.54; P < .001) and 7.33° (95% CI: -11.48, -3.19; P = .001). CONCLUSIONS M2 and M3 uprighting significantly improved in the extraction side after orthodontic treatment with unilateral maxillary M1 extraction. There was a significant increase in mesial tipping of maxillary second molar crowns over time.
Resumo:
OBJECTIVE To evaluate the long-term effects of asymmetrical maxillary first molar (M1) extraction in Class II subdivision treatment. MATERIALS AND METHODS Records of 20 Class II subdivision whites (7 boys, 13 girls; mean age, 13.0 years; SD, 1.7 years) consecutively treated with the Begg technique and M1 extraction, and 15 untreated asymmetrical Class II adolescents (4 boys, 11 girls; mean age, 12.2 years; SD, 1.3 years) were examined in this study. Cephalometric analysis and PAR assessment were carried out before treatment (T1), after treatment (T2), and on average 2.5 years posttreatment (T3) for the treatment group, and at similar time points and average follow-up of 1.8 years for the controls. RESULTS The adjusted analysis indicated that the maxillary incisors were 2.3 mm more retracted in relation to A-Pog between T1 and T3 (β = 2.31; 95% CI; 0.76, 3.87), whereas the mandibular incisors were 1.3 mm more protracted (β = 1.34; 95% CI; 0.09, 2.59), and 5.9° more proclined to the mandibular plane (β = 5.92; 95% CI; 1.43, 10.41) compared with controls. The lower lip appeared 1.4 mm more protrusive relative to the subnasale-soft tissue-Pog line throughout the observation period in the treated adolescents (β = 1.43; 95% CI; 0.18, 2.67). There was a significant PAR score reduction over the entire follow-up period in the molar extraction group (β = -6.73; 95% CI; -10.7, -2.7). At T2, 65% of the subjects had maxillary midlines perfectly aligned with the face. CONCLUSIONS Unilateral M1 extraction in asymmetrical Class II cases may lead to favorable occlusal outcomes in the long term without harming the midline esthetics and soft tissue profile.