973 resultados para chromosome painting
Resumo:
A very old unanswered question in classical cytology is whether chromosomes are arranged randomly in sperm or whether they occupy specific positions. Even with modern methods of chromosome painting, it is difficult to resolve this question for the very condensed and almost spherical sperm head of most mammals. We have taken advantage of the unusual fibrillar sperm head of monotreme mammals (echidna and platypus) to examine the position of chromosome landmarks in a two-dimensional array. We used fluorescence and radioactive in situ hybridization to telomeric, rDNA, and unique sequences to show that chromosomes are arranged tandemly and in a defined order in the sperm nucleus.
Resumo:
Chromosome sorting by flow cytometry is the main source of chromosome-specific DNA for the production of painting probes. These probes have been used for cross-species in situ hybridization in the construction of comparative maps, in the study of karyotype evolution and phylogenetics, in delineating territories in interphase nuclei, and in the analysis of chromosome breakpoints. We review here the contributions that this technology has made to the analysis of primate genomes. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Chromosome-specific gene regulation is known thus far only as a mechanism to equalize the transcriptional activity of the single male X chromosome with that of the two female X chromosomes. In Drosophila melanogaster, a complex including the five Male-Specific Lethal (MSL) proteins, “paints” the male X chromosome, mediating its hypertranscription. Here, with the molecular cloning of Painting of fourth (Pof), we describe a previously uncharacterized gene encoding a chromosome-specific protein in Drosophila. Unlike the MSL proteins, POF paints an autosome, the fourth chromosome of Drosophila melanogaster. Chromosome translocation analysis shows that the binding depends on an initiation site in the proximal region of chromosome 4 and spreads in cis to involve the entire chromosome. The spreading depends on sequences or structures specific to chromosome 4 and cannot extend to parts of other chromosomes translocated to the fourth. Spreading can also occur in trans to a paired homologue that lacks the initiation region. In the related species Drosophila busckii, POF paints the entire X chromosome exclusively in males, suggesting relationships between the fourth chromosome and the X and between POF complexes and dosage-compensation complexes.
Resumo:
Forty chromosome-specific paint probes of the domestic dog (Canis familiaris, 2n = 78) were used to delineate conserved segments on metaphase chromosomes of the American mink (Mustela vison, 2n = 30) by fluorescence in situ hybridisation. Half of the 38 canine autosomal probes each painted one pair of homologous segments in a diploid mink metaphase, whereas the other 19 dog probes each painted from two to five pairs of discrete segments. In total, 38 canine autosomal paints highlighted 71 pairs of conserved segments in the mink. These painting results allow us to establish a complete comparative chromosome map between the American mink and domestic dog. This map demonstrates that extensive chromosome rearrangements differentiate the karyotypes of the dog and American mink. The 38 dog autosomes could be reconstructed from the 14 autosomes of the American mink through at least 47 fissions, 25 chromosome fusions, and six inversions. Furthermore, comparison of the current dog/mink map with the published human/dog map discloses 23 cryptic intrachromosomal rearrangements in 10 regions of conserved synteny in the human and American mink genomes and thus further refined the human/mink comparative genome map. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
Supernumerary marker chromosomes (sSMC) may or may not be associated with an abnormal phenotype, depending on the presence of euchromatin, on their chromosomal origin and whether they are inherited. Over 80% of sSMCs are derived from acrocentric chromosomes and half of them include the short arm of chromosome 15. Generally, they appear as bisatellited isodicentric marker chromosomes, most of them are symmetric. These chromosomes are normally originated de novo and are associated with mild to severe intellectual disability but not with physical abnormalities. We report on a patient with an SMC studied using classical and molecular cytogenetic procedures (G and C banding, NOR staining, painting and centromeric fluorescent in situ hybridization (FISH), BAC-FISH, and SKY). The MLPA technique and DNA polymorphic markers were used in order to identify its parental origin. The marker chromosome, monosatellited and monocentric, was found to be derived from a maternal chromosome 15 and was defined as 15pter-q21.2. This is the report of the largest de novo monosatellited 15q marker chromosome ever published presenting detailed cytogenetic and clinical data. It was associated with a phenotype including cardiac defect, absence of septum pellucidum, and dysplasia of the corpus callosum. (C) 2010 Wiley-Liss, Inc.
Resumo:
Cross-species fluorescence in-situ hybridization (Zoo-FISH) was performed on cattle metaphase spreads using Homo sapiens X chromosome (HSAX) painting probes specific for the p- and q-arms to identify the cytogenetic location of a chromosome breakpoint between HSAX and the Bos taurus X chromosome (BTAX). The existence of a breakpoint is strongly suggested by recent radiation hybrid and FISH mapping results. Hybridization probes were generated by microdissection of HSAX p- and q-arms using the contact-free technology of Laser Microdissection and Pressure Catapulting (LMPC), amplification of the isolated chromosome material by DOP-PCR, and labelling of the PCR products with digoxigenin in a secondary PCR. Independent Zoo-FISH of the two painting probes on bovine metaphase chromosomes (detected by antidigoxigenin-fluorescein) resulted in clear hybridization signals on BTAX. A breakpoint was identified between HSAXp and HSAXq on BTAX, and narrowed down between the G-bands BTAXq25 and BTAXq26. The assumed centromere transposition between HSAX and BTAX associated with the rearranged chromosome segments is supported by cytogenetic assignments of the genes BGN and G6PD to BTAX.
Resumo:
Unlike the X chromosome, the mammalian Y chromosome undergoes evolutionary decay resulting in small size. This sex chromosomal heteromorphism, observed in most species of the fossorial rodent Ctenomys, contrasts with the medium-sized, homomorphic acrocentric sex chromosomes of closely related C. maulinus and C. sp. To characterize the sequence composition of these chromosomes, fluorescent banding, self-genomic in situ hybridization, and fluorescent in situ hybridization with an X painting probe were performed on mitotic and meiotic plates. High molecular homology between the sex chromosomes was detected on mitotic material as well as on meiotic plates immunodetected with anti-SYCP3 and anti-gamma H2AX. The Y chromosome is euchromatic, poor in repetitive sequences and differs from the X by the loss of a block of pericentromeric chromatin. Inferred from the G-banding pattern, an inversion and the concomitant prevention of recombination in a large asynaptic region seems to be crucial for meiotic X chromosome inactivation. These peculiar findings together with the homomorphism of Ctenomys sex chromosomes are discussed in the light of the regular purge that counteracts Muller's ratchet and the probable mechanisms accounting for their origin and molecular homology. (C) 2014 S. Karger AG, Basel
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Raman spectroscopic analyses of fragmented wall-painting specimens from a Romano-British villa dating from ca. 200 AD are reported. The predominant pigment is red haematite, to which carbon, chalk and sand have been added to produce colour variations, applied to a typical Roman limewash putty composition. Other pigment colours are identified as white chalk, yellow (goethite), grey (soot/chalk mixture) and violet. The latter pigment is ascribed to caput mortuum, a rare form of haematite, to which kaolinite (possibly from Cornwall) has been added, presumably in an effort to increase the adhesive properties of the pigment to the substratum. This is the first time that kaolinite has been reported in this context and could indicate the successful application of an ancient technology discovered by the Romano-British artists. Supporting evidence for the Raman data is provided by X-ray diffraction and SEM-EDAX analyses of the purple pigment.
Resumo:
Professionals working in disability services often encounter clients who have chromosome disorders such as Williams, Angelman or Down syndromes. As chromosome testing becomes increasingly sophisticated, however, more people are being diagnosed with very rare chromosome disorders that are identified not by a syndrome name, but rather by a description of the number, size and shape of their chromosomes (called the karyotype) or by a report of chromosome losses and gains detected through an advanced process known as microarray-based comparative genomic hybridisation (array CGH). For practitioners who work with individuals with rare chromosome disorders and their families, a basic level of knowledge about the evolving field of genetics, as well as specific knowledge about chromosome abnormalities, is essential since they must be able to demonstrate their knowledge and skills to clients (Simic & Turk, 2004). In addition, knowledge about the developmental consequences of various rare chromosome disorders is important for guiding prognoses, expectations, decisions and interventions. The current article provides information that aims to help practitioners work more effectively with this population. It begins by presenting essential information about chromosomes and their numerical and structural abnormalities and then considers the developmental consequences of rare chromosome disorders through a critical review of relevant literature.
Resumo:
Abstract Causative genetic variants have to date been identified for only a small proportion of familial colorectal cancer (CRC). While conditions such as Familial Adenomatous Polyposis and Lynch syndrome have well defined genetic causes, the search for variants underlying the remainder of familial CRC is plagued by genetic heterogeneity. The recent identification of families with a heritable predisposition to malignancies arising through the serrated pathway (familial serrated neoplasia or Jass syndrome) provides an opportunity to study a subset of familial CRC in which heterogeneity may be greatly reduced. A genome-wide linkage screen was performed on a large family displaying a dominantly-inherited predisposition to serrated neoplasia genotyped using the Affymetrix GeneChip Human Mapping 10 K SNP Array. Parametric and nonparametric analyses were performed and resulting regions of interest, as well as previously reported CRC susceptibility loci at 3q22, 7q31 and 9q22, were followed up by finemapping in 10 serrated neoplasia families. Genome-wide linkage analysis revealed regions of interest at 2p25.2-p25.1, 2q24.3-q37.1 and 8p21.2-q12.1. Finemapping linkage and haplotype analyses identified 2q32.2-q33.3 as the region most likely to harbour linkage, with heterogeneity logarithm of the odds (HLOD) 2.09 and nonparametric linkage (NPL) score 2.36 (P = 0.004). Five primary candidate genes (CFLAR, CASP10, CASP8, FZD7 and BMPR2) were sequenced and no segregating variants identified. There was no evidence of linkage to previously reported loci on chromosomes 3, 7 and 9.