973 resultados para chlorine
Resumo:
A new class of high molecular weight polyethersulfone ionomers is described in which the ionic content can be varied, at will, over a very wide and fully-controllable range. A novel type of coating process enables these materials to be deposited from alcohol-type solvents as cohesive but very thin (50 – 250 nm) films on porous support-membranes, giving high-flux membranes (3.3 – 5.0 L m-2 h-1 bar-1) with very good, though not outstanding salt rejection (typically 92 - 96%). A secondary layer, of formaldehyde-cross-linked polyvinyl alcohol, can be deposited from aqueous solution on the surface of the ionomer membrane, and this layer increases salt rejection to greater than 99% without serious loss of water permeability. The final multi-layer membrane shows excellent chlorine tolerance in reverse-osmosis operation.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with HCL The reaction was studied in the gas phase at 10 Torr total pressure in SF6 bath gas, at five temperatures in the range of 296-611 K. The second-order rate constants fitted the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.51 +/- 0.06) + (1.92 +/- 0.47 kJ mol(-1))/RTIn10 Experiments at other pressures showed that these rate constants were unaffected by pressure in the range of 10-100 Torr, but showed small decreases in value of no more than 20% ( +/- 10%) at I Toff, at both the highest and lowest temperatures. The data are consistent with formation of an initial weakly bound donor-acceptor complex, which reacts by two parallel pathways. The first is by chlorine-to-silicon H-shift to make vibrationally excited chlorosilane, SiH3Cl*, which yields HSiCl by H-2 elimination from silicon. In the second pathway, the complex proceeds via H-2 elimination (4-center process) to make chlorosilylene, HSiCl, directly. This interpretation is supported by ab initio quantum calculations carried out at the G3 level which reveal the direct H-2 elimination route for the first time. RRKM modeling predicts the approximate magnitude of the pressure effect but is unable to determine the proportions of each pathway. The experimental data agree with the only previous measurements at room temperature. Comparisons with other reactions of SiH2 are also drawn.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of both silacyclopent-3-ene and phenylsilane, have been carried out to obtain second-order rate constants for its reaction with CH3Cl. The reaction was studied in the gas phase at six temperatures in the range 294-606 K. The second-order rate constants gave a curved Arrhenius plot with a minimum value at T approximate to 370 K. The reaction showed no pressure dependence in the presence of up to 100 Torr SF6. The rate constants, however, showed a weak dependence on laser pulse energy. This suggests an interpretation requiring more than one contributing reaction pathway to SiH2 removal. Apart from a direct reaction of SiH2 with CH3Cl, reaction of SiH2 with CH3 (formed by photodissociation of CH3Cl) seems probable, with contributions of up to 30% to the rates. Ab initio calculations (G3 level) show that the initial step of reaction of SiH2 with CH3Cl is formation of a zwitterionic complex (ylid), but a high-energy barrier rules out the subsequent insertion step. On the other hand, the Cl-abstraction reaction leading to CH3 + ClSiH2 has a low barrier, and therefore, this seems the most likely candidate for the main reaction pathway of SiH2 with CH3Cl. RRKM calculations on the abstraction pathway show that this process alone cannot account for the observed temperature dependence of the rate constants. The data are discussed in light of studies of other silylene reactions with haloalkanes.
Resumo:
The absorption cross-sections of Cl2O6 and Cl2O4 have been obtained using a fast flow reactor with a diode array spectrometer (DAS) detection system. The absorption cross-sections at the wavelengths of maximum absorption (lambda(max)) determined in this study are those of Cl2O6: (1.47 +/- 0.15) x 10(-17) cm(2) molecule(-1), at lambda(max) = 276 nm and T = 298 K; and Cl2O4: (9.0 +/- 2.0) x 10(-19) cm(2) molecule(-1), at lambda(max) = 234 nm and T = 298 K. Errors quoted are two standard deviations together with estimates of the systematic error. The shapes of the absorption spectra were obtained over the wavelength range 200-450 nm for Cl2O6 and 200-350 nm for Cl2O4, and were normalized to the absolute cross-sections obtained at lambda(max) for each oxide, and are presented at 1 nm intervals. These data are discussed in relation to previous measurements. The reaction of O with OCIO has been investigated with the objective of observing transient spectroscopic absorptions. A transient absorption was seen, and the possibility is explored of identifying the species with the elusive sym-ClO3 or ClO4, both of which have been characterized in matrices, but not in the gas-phase. The photolysis of OCIO was also re-examined, with emphasis being placed on the products of reaction. UV absorptions attributable to one of the isomers of the ClO dimer, chloryl chloride (ClClO2) were observed; some Cl2O4 was also found at long photolysis times, when much of the ClClO2 had itself been photolysed. We suggest that reports of Cl2O6 formation in previous studies could be a consequence of a mistaken identification. At low temperatures, the photolysis of OCIO leads to the formation of Cl2O3 as a result of the addition of the ClO primary product to OCIO. ClClO2 also appears to be one product of the reaction between O-3 and OCIO, especially when the reaction occurs under explosive conditions. We studied the kinetics of the non-explosive process using a stopped-flow technique, and suggest a value for the room-temperature rate coefficient of (4.6 +/- 0.9) x 10(-19) cm(3) molecule(-1) s(-1) (limit quoted is 2sigma random errors). The photochemical and thermal decomposition of Cl2O6 is described in this paper. For photolysis at k = 254 nm, the removal of Cl2O6 is not accompanied by the build up of any other strong absorber. The implications of the results are either that the photolysis of Cl2O6 produces Cl-2 directly, or that the initial photofragments are converted rapidly to Cl-2. In the thermal decomposition of Cl2O6, Cl2O4 was shown to be a product of reaction, although not necessarily the major one. The kinetics of decomposition were investigated using the stopped-flow technique. At relatively high [OCIO] present in the system, the decay kinetics obeyed a first-order law, with a limiting first-order rate coefficient of 0.002 s(-1). (C) 2004 Elsevier B.V. All rights reserved.
Experimental structure determination of the chemisorbed overlayers of chlorine and iodine on Au{111}
Resumo:
We have performed an experimental structure determination of the ordered p(sqrt[3] x sqrt[3])R30 degrees structures of chlorine and iodine on Au{111} using low-energy electron diffraction (LEED). Despite great similarities in the structure of the underlying substrate, which shows only minor deviations from the bulk positions in both cases, chlorine and iodine are found to adsorb in different adsorption sites, fcc and hcp hollow sites, respectively. The experimental Au-Cl and Au-I bond lengths of 2.56 and 2.84 A are close to the sums of the covalent radii, supporting the view that the bond is essentially covalent in nature; however, they are significantly shorter than predicted theoretically.
Resumo:
A gas-phase kinetics study of the atmospherically important reaction between Cl2 and dimethyl sulfide (DMS)Cl2 + CH3SCH3 → productshas been made using a flow-tube interfaced to a photoelectron spectrometer. The rate constant for this reaction has been measured at 1.6 and 3.0 torr at T = (294 ± 2) K as (3.4 ± 0.7) × 10−14 cm3 molecule−1 s−1. Reaction (1) has been found to proceed via an intermediate, (CH3)2SCl2, to give CH3SCH2Cl and HCl as the products. The mechanism of this reaction and the structure of the intermediate were investigated using electronic structure calculations. A comparison of the mechanisms of the reactions between Cl atoms and DMS, and Cl2 and DMS has been made and the relevance of the results to atmospheric chemistry is discussed.
Resumo:
In a study using UV photoelectron spectroscopy (PES) of the atmospherically relevant reaction CH3SCH3 + Cl2 → CH3SCH2Cl + HCl bands associated with a reaction intermediate have been observed. These have been assigned to ionization of the covalently bound molecule (CH3)2SCl2 on the basis of the intensity of the observed bands as a function of reaction time, molecular orbital calculations of vertical ionization energies and evidence from infrared spectroscopy. A method has also been developed, with the flow-tube/PE spectrometer combination used, to measure photoionization cross-sections of the reagents and products at the photon energy utilized and this has allowed the photoionization cross-section of the intermediate to be estimated. This work augments an earlier study in which the rate constant of the reaction between CH3SCH3 (DMS) and Cl2 has been measured at room temperature.
Resumo:
Considered as one of the most available radionuclide in soileplant system, 36Cl is of potential concern for long-term management of radioactive wastes, due to its high mobility and its long half-life. To evaluate the risk of dispersion and accumulation of 36Cl in the biosphere as a consequence of a potential contamination, there is a need for an appropriate understanding of the chlorine cycling dynamics in the ecosystems. To date, a small number of studies have investigated the chlorine transfer in the ecosystem including the transformation of chloride to organic chlorine but, to our knowledge, none have modelled this cycle. In this study, a model involving inorganic as well as organic pools in soils has been developed and parameterised to describe the biogeochemical fate of chlorine in a pine forest. The model has been evaluated for stable chlorine by performing a range of sensitivity analyses and by comparing the simulated to the observed values. Finally a range of contamination scenarios, which differ in terms of external supply, exposure time and source, has been simulated to estimate the possible accumulation of 36Cl within the different compartments of the coniferous stand. The sensitivity study supports the relevancy of the model and its compartments, and has highlighted the chlorine transfers affecting the most the residence time of chlorine in the stand. Compared to observations, the model simulates realistic values for the chlorine content within the different forest compartments. For both atmospheric and underground contamination scenarios most of the chlorine can be found in its organic form in the soil. However, in case of an underground source, about two times less chlorine accumulates in the system and proportionally more chlorine leaves the system through drainage than through volatilisation.
Resumo:
An alternating hexameric water (H2O)(6) cluster and a chlorine-water cluster [Cl-2(H2O)(4)](2-) in the chair forms combine axially to each other to form a 1D chain [{Cl-2(H2O)(6)}(2-)](n) in complex [FeL2]Cl center dot(H2O)(3) (L=2-[(2-methylaminoethylimino)-methyl]-phenol)]. The water molecules display extensive H-bonding interactions with monomeric iron-organic units to form a hydrogen-bonded 2D supramolecular assembly.
Resumo:
In this paper, we report the photodegradation of three different chlorine photosensitizers (Photoditazine (R), Radachlorin (R), and Foscan (R)). The photosensitizer degradation was analyzed by changes in the fluorescence spectrum during illumination. The rate of fluorescence variation was normalized to the solution absorption and the photon energy resulting in the determination of the necessary number of photons to be absorbed to induce photosensitizer photodegradation. The parameter for rate of the molecules decay, the photon fluence rate and optical properties of the solution allow us to determine the photosensitizer stability in solution during illumination. The results show that the order of susceptibility for photodegradation rate is: Radachlorin (R) < Photoditazine (R) < Foscan (R). This difference in the photodegradation rate for Foscan can be explained by the high proportion of aggregates in solution that inhibit the photo-oxidative process that impede the singlet oxygen formation. We hypothesize that there is a correlation between photodegradation rate and photodynamic efficacy witch is governed by the singlet oxygen formation responsible for the most relevant reaction of the cell death photodynamic induction. Then its is important to know the photostability of different types of drugs since the photodegradation rate, the photodegradation as well as the photodynamic efficacy are strong correlated to the oxygen concentration in the tissue.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives. The objectives of this study were to evaluate pH, available chlorine content, and antibacterial activity of endodontic irrigants and their combinations.Study design. The pH and chlorine content of sodium hypochlorite (NaOCl) were analyzed pure and in combination with 10% citric acid (CA) and apple vinegar (AV). The antibacterial effect of the following solutions was measured by direct contact test against Enterococcus faecalis: 2.5% NaOCl, 2.5% NaOCl + 10% CA (7:3), 2.5% NaOCl + AV (5:5), 10% CA, and AV. Sterile saline was used as control. The colony-forming units were determined by serial decimal dilutions.Results. The combination of 2.5% NaOCl with CA or AV lowered the pH and the chlorine content. NaOCl, alone or in combination was able to eliminate E. faecalis in 30 seconds, and CA, after 10 minutes. AV promoted reduction (32.2%) after 10 minutes.Conclusions. NaOCl with acidic solutions lowered the pH and the chlorine content, but did not alter its antibacterial effect. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 112:132-135)
Resumo:
The generation of active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes, with different compositions of Ir (x = 0.01, 0.05, 0.10 and 0.30 ), was investigated by controlled current density electrolysis. Using a low concentration of chloride ions (0.05 mol L-1) and a low current density (5 mA cm(-2)) it was possible to produce up to 60 mg L-1 of active chlorine on a Ti/Sn0.99Ir0.01O2 anode. The feasibility of the discoloration of a textile acid azo dye, acid red 29 dye (C.I. 16570), was also investigated with in situ electrogenerated active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes. The best conditions for 100% discoloration and maximum degradation (70% TOC reduction) were found to be: NaCl pH 4, 25 mA cm(-2) and 6 h of electrolysis. It is suggested that active chlorine generation and/or powerful oxidants such as chlorine radicals and hydroxyl radicals are responsible for promoting faster dye degradation. Rate constants calculated from color decay versus time reveal a zero order reaction at dye concentrations up to 1.0 x 10(-4) mol L-1. Effects of other electrolytes, dye concentration and applied density currents also have been investigated and are discussed.
Resumo:
The ethanol production in Brazil is carried out by fed-batch or continuous process with cell recycle, in such way that bacterial contaminants are also recycled and may be troublesome due to the substrate competition. Addition of sulphuric acid when inoculum cells are washed can control the bacterial growth or alternatively biocides are used. This work aimed to verify the effect of chlorine dioxide, a well-known biocide for bacterial decontamination of water and equipments, against contaminant bacteria ( Bacillus subtilis, Lactobacillus plantarum, Lactobacillus fermentum and Leuconostoc mesenteroides) from alcoholic fermentation, through the method of minimum inhibitory concentration ( MIC), as well as its effect on the industrial yeast inoculum. Lower MIC was found for B. subtilis ( 10 ppm) and Leuconostoc mesenteroides ( 50 ppm) than for Lactobacillus fermentum ( 75 ppm) and Lactobacillus plantarum ( 125 ppm). Additionally, these concentrations of chlorine dioxide had similar effects on bacteria as 3 ppm of Kamoran (R) ( recommended dosage for fermentation tanks), exception for B. subtilis, which could not be controlled at this Kamoran (R) dosage. The growth of industrial yeasts was affected when the concentration of chlorine dioxide was higher than 50 ppm, but the effect was slightly dependent on the type of yeast strain. Smooth yeast colonies ( dispersed cells) seemed to be more sensitive than wrinkled yeast colonies ( clustered cells/pseudohyphal growth), both isolated from an alcohol-producing unit during the 2006/2007 sugar cane harvest. The main advantage in the usage of chlorine dioxide that it can replace antibiotics, avoiding the selection of resistant populations of microorganisms.
Resumo:
The electronic structure and spectroscopic properties (R(e), omega(e), omega(e)x(e), beta(e), and T(e)) of the ground state and the 22 lowest excited states of chlorine molecule were studied within a four-component relativistic framework using the MOLFDIR program package. The potential energy curves of all possible 23 covalent states were calculated using relativistic complete open shell configuration interaction approach. In addition, four component multireference configuration interaction with single and double excitation calculations were performed in order to infer the effects due to dynamical correlation in vertical excitations. The calculated properties are in good agreement with the available experimental data.