976 resultados para chemically modified electrodes
Resumo:
Electrochemical sensors are increasingly being investigated to perform measurements for single or multiple analytes. Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for drug analysis. Electrochemical sensors for the measurement of analytes of interest in clinical chemistry are ideally suited for these applications, due to their high sensitivity and selectivity, simple-to-operate, rapid response time and low-cost. As part of the present investigations eight voltammetric sensors have been fabricated for six drugs such as PAM Chloride, Tamsulosin Hydrochloride, Hesperidin Methyl Chalcone, Guaiphenesin, Cephalexin and Amoxicillin trihydrate. The modification techniques adopted as part of the present work include multiwalled carbon nanotube (MWNT) based modifications, electropolymerization, gold nanoparticle (AuNP) based modifications and platinum nanoparticle (PtNP) based modifications. The thesis is divided into nine chapters
Resumo:
There is an enormous demand for chemical sensors in many areas and disciplines including chemistry, biology, clinical analysis, environmental science. Chemical sensing refers to the continuous monitoring of the presence of chemical species and is a rapidly developing field of science and technology. They are analytical devices which transform chemical information generating from a reaction of the analyte into an measurable signal. Due to their high selectivity, sensitivity, fast response and low cost, electrochemical and fluorescent sensors have attracted great interest among the researchers in various fields. Development of four electrochemical sensors and three fluorescent sensors for food additives and neurotransmitters are presented in the thesis. Based on the excellent properties of multi walled carbon nanotube (MWCNT), poly (L-cysteine) and gold nanoparticles (AuNP) four voltammetric sensors were developed for various food additives like propyl gallate, allura red and sunset yellow. Nanosized fluorescent probes including gold nanoclusters (AuNCs) and CdS quantum dots (QDs) were used for the fluorescent sensing of butylated hydroxyanisole, dopamine and norepinephrine. A total of seven sensors including four electrochemical sensors and three fluorescence sensors have been developed for food additives and neurotransmitters.
Resumo:
Chemically modified electrodes based on hexacyanometalate films are presented as a tool in analytical chemistry. Use of amperometric sensors and/or biosensors based on the metal-hexacyanoferrate films is a tendency. This article reviews some applications of these films for analytical determination of both inorganic (e.g. As3+, S2O3 2-) and organic (e.g. cysteine, hydrazine, ascorbic acid, gluthatione, glucose, etc.) compounds.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Once petroleum is na exhaustible source of energy, alternative fuels are having more prominence. A much discussed option for replacing fossil fuels is the use of biofuels derived from oils or fats, especially biodiesel. The biodiesel preparation is through a reaction named transesterification, a reaction of triglycerides with a short chain alcohol with a catalyst, producing a mixture of fatty acid esters and glycerol. According to ANP (National Petroleum Agency) specifications, biodiesel can have contaminants due to the catalyst or oil used on its synthesis, such as phosphorus, wich can damage the catalytic converter and cause significant increase in the particles emission. This project aims to develop na alternative method using chemically modified electrodes with iron nanoparticles for determination of phosphorus in biodiesel. For the formation of the iron nanoparticles film on the surface of a glassy carbon electrode, was used a iron sulfate solution. The film was formed after 10 successive cycles, with a scanning speed of 50 mV s-1 and a potential range of -0,9 to -1,25 V. To reduce possible oxides on the surface and activate the electrode, it has been subjected to a cathodic polarization with a potential of -1,25 V for 15 minutes in a sodium hydroxide solution. In cyclic voltammograms obtained in the study of the speed of scanning, there is an increase in the intensity of the anodic and cathodic current peaks. The cathodic peak current varied linearly with the square root of scan rate, showing that the electrode is controlled by diffusion. After successive additions of phosphate there is a linear variation in the current peak in the concentration range of 1,0 x 10-7 a 1,0 x 10-6 mol L-1. To determine if the concentration of phosphorus in real sample, the method of adding standard was used by adding aliquots of phosphate ions in the solution containing soy biodiesel extracted with ....
Resumo:
We report an efficient alternative to obtain recessed microelectrodes device on gold electrode surface, in which mixed self-assembled monolayer of long and short carbon alkanethiol chains was used for this purpose. Development of the modified electrodes included the chemical adsorption of 11-mercaptoundecanoic acid and 2-mercaptoethanol solution, as well as their mixtures, on gold surface, resulting in the final mixed self-assembled monolayer configuration. For comparison, the electrochemical performance of self-assembled monolayer of 11-mercaptoundecanoic acid. 3-mercaptopropionic acid, 4-mercapto-1-butanol and 6-mercapto-1-hexanol modified electrodes was also investigated. It was verified that, in the mixed self-assembled monolayer, the 11-mercaptoundecanoic acid acts as a barrier for electron transfer while the short alkanethiol chair is deposited in an island-like shape through which electrons can be freely transferred to ions in solution, allowing electrochemical reactions to occur. The performance of the modified electrodes toward microelectrode behavior was investigated via cyclic voltammetry and electrochemical impedance spectroscopy measurements using [Fe(CN)(6)](3-/4-) redox couple as a probe. In this case, sigmoidal voltammetric responses were obtained, very similar to those observed for microelectrodes. Such behavior reinforces the proposition of electron transfer through the short alkanethiol chain layer and surface blockage by the long chain one. Electrochemical impedance results allowed calculated the mean radius value of each microelectrode disks of 3.8 mu m with about 22 mu m interval between them. The microelectrode environment provided by the mixed self-assembled monolayer can be conveniently used to provide an efficient catalytic conversion in biosensing applications. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Chemically Modified Electrodes (CME) are widely used in electroanalytical chemistry as chemical sensors. The interest in the covalent anchoring of a redox mediator on the electrode surface is increasing, because it allows the sensibility and the selectivity of this kind of systems to improve. My work is situated in this field of research and involves the synthesis of new Iron(0) complexes that contain cyclopentadienone, N-heterocyclic carbene (NHC) and carbonyl ancillary ligands. These complexes have shown electrochemical properties similar to those of ferrocene (organometallic compound widely used as electrochemical sensor). These complexes have been properly functionalized with a EDOT group in the NHC ligand side chain that it was after used for the realization of Electrochemically Modified PEDOT thanks to copolymerization reaction between the functionalized complex and the EDOT in different amounts. All the synthetic steps were assisted by suitable characterizations (NMR, IR, ESI-MS, cyclic voltammetry and X-ray for the monomeric compound as imidazolium salt and NHC functionalized complexes; cyclic voltammetry, IR e SEM for the copolymers). The properties of the polymer as a selective sensor was preliminarily investigated for dopamine and 2-propanol.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)