995 resultados para chemical engineering


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In some operational circumstances a fast evaluation of landfill leachate anaerobic treatability is necessary, and neither Biochemical Methane Potential nor BOD/COD ratio are fast enough. Looking for a fast indicator, this work evaluated the anaerobic treatability of landfill leachate from São Carlos-SP (Brazil) in a pilot scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was conducted at ambient temperature in the landfill area. After the acclimation, at a second stage of operation, the AnSBBR presented efficiency above 70%, in terms of COD removal, utilizing landfill leachate without water dilution, with an inlet COD of about 11,000 mg.L-1, a TVA/COD ratio of approximately 0.6 and reaction time equal to 7 days. To evaluate the landfill leachate biodegradability variation over time, temporal profiles of concentration were performed in the AnSBBR. The landfill leachate anaerobic biodegradability was verified to have a direct and strong relationship to the TVA/COD ratio. For a TVA/CODTotal ratio lower than 0.20, the biodegradability was considered low, for ratios between 0.20 and 0.40 it was considered medium, and above 0.40 it was considered high.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45 degrees C and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and H-1 NMR spectroscopy, suggested that the biodiesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe production of methyl and ethyl esters derived from baru oil (Dipteryx alata Vog.). Water and alcohols are removed from the biodiesel obtained by simple distillation. We study the acidity, density, iodine number, viscosity, water content, peroxide number, external appearance, and saponification number of the oil, its methyl and ethyl esters (biodiesels) and their blends (B5, B10, B15, B20, and B30) with commercial diesel fuel.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Active pharmaceutical ingredients have very strict quality requirements; minor changes in the physical and chemical properties of pharmaceuticals can adversely affect the dissolution rate and therefore the bioavailability of a given drug. Accordingly, the aim of the present study was to investigate the effect of spray drying on the physical and in vitro dissolution properties of four different active pharmaceutical ingredients, namely carbamazepine, indomethacin, piroxicam, and nifedipine. Each drug was dispersed in a solution of ethanol and water (70:30) and subjected to single-step spray drying using similar operational conditions. A complete characterization of the spray-dried drugs was performed via differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), particle size distribution analysis, solubility analysis, and an in vitro dissolution study. The results from the thermal analysis and X-ray diffraction showed that, except for carbamazepine, no chemical modifications occurred as a result of spray drying. Moreover, the particle size distribution of all the spray-dried drugs significantly decreased. In addition, SEM images showed that most of the particles had an irregular shape. There was no significant improvement in the solubility of the spray-dried drugs compared with the unprocessed compounds; however, in general, the dissolution rates of the spray-dried drugs showed a remarkable improvement over their non-spray-dried counterparts. Therefore, the results from this study demonstrate that a single spray-drying step may lead to changes in the physical properties and dissolution characteristics of drugs and thus improve their therapeutic action.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45ºC and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and ¹H NMR spectroscopy, suggested that the biodiesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The curriculum of the Bucknell University Chemical Engineering Department includes a required senior year capstone course titled Process Engineering, with an emphasis on process design. For the past ten years library research has been a significant component of the coursework, and students working in teams meet with the librarian throughout the semester to explore a wide variety of information resources required for their project. The assignment has been the same from 1989 to 1999. Teams of students are responsible for designing a safe, efficient, and profitable process for the dehydrogenation of ethylbenzene to styrene monomer. A series of written reports on their chosen process design is a significant course outcome. While the assignment and the specific chemical technology have not changed radically in the past decade, the process of research and discovery has evolved considerably. This paper describes the solutions offered in 1989 to meet the information needs of the chemical engineering students at Bucknell University, and the evolution in research brought about by online databases, electronic journals, and the Internet, making the process of discovery a completely different experience in 1999.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The production by biosynthesis of optically active amino acids and amines satisfies the pharmaceutical industry in its demand for chiral building blocks for the synthesis of various pharmaceuticals. Among several enzymatic methods that allow the synthesis of optically active aminoacids and amines, the use of minotransferase is a promising one due to its broad substrate specificity and no requirement for external cofactor regeneration. The synthesis of chiral compounds by aminotransferases can be done either by asymmetric synthesis starting from keto acids or ketones, and by kinetic resolution starting from racemic aminoacids or amines. The asymmetric synthesis of substituted (S)-aminotetralin, an active pharmaceutical ingredient (API), has shown to have two major factors that contribute to increasing the cost of production. These factors are the raw material cost of biocatalyst used to produce it and product loss during biocatalyst separation. To minimize the cost contribution of biocatalyst and to minimize the loss of product, two routes have been chosen in this research: 1. To engineer the aminotransferase biocatalyst to have greater specific activity, and 2. Improve the engineering of the process by immobilization of biocatalyst in calcium alginate and addition of cosolvents. An (S)-aminotransferase (Mutant CNB03-03) was immobilized, not as purified enzyme but as enzyme within spray dried cells, in calcium alginate beads and used to produce substituted (S)-aminotetralin at 50 °C and pH 7 in experiments where the immobilized biocatalyst was recycled. Initial rate of reaction for cycle 1 (6 hr duration) was determined to be 0.258 mM/min, for cycle 2 (20 hr duration) it decreased by ~50% compared to cycle 1, and for cycle 3 (20 hr duration) it decreased by ~90% compared to cycle 1 (immobilized preparation consisted of 50 mg of spray dried cells per gram of calcium alginate). Conversion to product for each cycle decreased as well, from 100% in cycle 1 (About 50 mM), 80% in cycle 2, and 30% after cycle 3. This mutant was determined to be deactivated at elevated temperatures during the reaction cycle and was not stable enough to allow multiple cycles in its immobilized form. A new mutant aminotransferase was isolated by applying error-prone polymerase chain reaction (PCR) on the gene coding for this enzyme and screening/selection: CNB04-01. This mutant showed a significant improvement in thermostability in comparison to CNB03-03. The new mutant was immobilized and tested under similar reaction conditions. Initial rate remained fairly constant (0.2 mM/min) over four cycles (each cycle with a duration of about 20 hours) with the mutant retaining almost 80% of initial rate in the fourth cycle. The final product concentrations after each cycle did not decrease during recycle experiments. Thermostability of CNB04-01 was much improved compared to CNB03-03. Under the same reaction conditions as stated above, the addition of co-solvents was studied in order to increase substituted tetralone solubility. Toluene and sodium dodecylsulfate (SDS) were used. SDS at 0.01% (w/v) allowed four recycles of the immobilized spray dried cells of CNB04-01, always reaching higher product concentration (80-85 mM) than the system with toluene at 3% (v/v) -70 mM-. The long term activity of immobilized CNB04-01 in a system with SDS 0.01% (w/v) at 50 °C, pH 7 was retained for three cycles (20 to 24 hours each one), reaching always final product concentration between 80-85 mM, but dropping precipitously in the fourth cycle to a final product concentration of 50 mM. Although significant improvement of immobilization on productivity and stability were observed using CNB04-01, another observation demonstrated the limitations of an immobilization strategy on reducing process costs. After analyzing the results of this experiment it was seen that a sudden drop occurred on final product concentration after the third recycle. This was due to product accumulation inside the immobilized preparation. In order to improve the economics of the process, research was focused on developing a free enzyme with an even higher activity, thus reducing raw material cost as well as improving biomass separation. A new enzyme was obtained (CNB05-01) using error-prone PCR and screening using as a template the gene derived from the previous improved enzyme. This mutant was determined to have 1.6 times the initial rate of CNB04-01 and had a higher temperature optimum (55°). This new enzyme would allow reducing enzyme loading in the reaction by five-fold compared to CNB03-03, when using it at concentration of one gram of spray dried cells per liter (completing the reaction after 20-24 hours). Also this mutant would allow reducing process time to 7-8 hours when used at a concentration of 5 grams of spray dried cells per liter compared to 24 hours for CNB03-03, assuming that the observations shown before are scalable. It could be possible to improve the economics of the process by either reducing enzyme concentration or reducing process time, since the production cost of the desired product is primarily a function of both enzyme concentration and process time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

After the development of the viral-based prostate cancer vaccine, Ad5-PSA, much research has been orientated to help enhance the induced immune response by combining the vaccine with physical and chemical modulating agents, more specifically the polymers polyethylenimine (PEI), chitosan, and chitosan coated with CD3 complex antibodies; all previously shown to stimulate an immune response as isolated gene carriers. To compare the vaccine-induced immune responses between the naked vaccine and the polymer-vaccine combinations, a mouse model using the ovalbumin- specific Ad-OVA vaccine was tested using intracellular cytokine staining (ICS), tetramer staining, and cytotoxic T-cell lymphocyte assays to measure the activation of CD8+ T-cells, interferon gamma proteins (INFƒ×), and the induced cytotoxicity to ovalbumin. The Ad-OVA vaccine combined with both chitosan and chitosan with CD3 complex antibodies, both natural polymers, were found to induce similar immune responses to the naked vaccine while the vaccine combined with the synthetic polymer, PEI, diminished the immune response.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The 24th Biochemical Engineering Symposium was held 9-10 September 1994 at the YMCA of the Rockies conference center in Estes Park, Colorado, under the sponsorship of the Department of Chemical Engineering at the University of Colorado. Previous symposia in this series have been hosted by Kansas State University (1st, 3rd, 5th, 9th, 12th, 16th, 20th), University of Nebraska-Lincoln (2nd, 4th), Iowa State University (6th, 7th, 10th, 13th, 17th, 22nd), University of Missouri-Columbia (8th, 14th, 19th), Colorado State University (11th, 15th, 21st), University of Colorado (18th), and the University of Oklahoma (23rd). The next symposium is scheduled to be held at the University of Missouri-Columbia. The symposia are devoted to talks by students about their ongoing research. Because final publication usually takes place elsewhere, the papers included in the proceedings are brief, and often cover work in progress. ContentsIn-Well Aeration: An Innovative Subsurface Remediation TechnologyPrashant Gandhi, X. Yang, L.E. Erickson, and L. T. Fan; Kansas State University Expression of an Antimicrobial Peptide Analog in Eacherlchill coliChris Haught and Roger G. Harrison; University of Oklahoma Using High-frequency Backpulaing to Maximize Croasflow Filtration PerformanceSanjeev G. Redkar and Robert H. Davis; University of Colorado Low Molecular Weight Organic Compositions of Acid Waters from Vegetable Oil SoapstocksSteven L. Johansen, Arunthathi Sivasothy, Peter J. Reilly, and Earl G. Hammond; Iowa State University; Michael K. Dowd; U.S. Department of Agriculture Gas Phase Composition Effects on Suspension Cultures of Taxus cuspidata Noushin Mirjalili and James C. Linden; Colorado State University Cybernetic Modeling of Spontaneous Oscillations in Continuous Cultures of Ssccharomyces cerevisiaeKenneth D. Jones and Dhinakar S. Kompala; University of Colorado The Effect of Turbulent Shear on Calcium Mobilization in Mammalian CellsChristopher M. Cannizzaro, Pradyumna K. Namdev, and Eric H. Dunlop; Colorado State University Experimental Studies of Droplet Ejection at the Free Surface In Sparged ReactorsT. Y. Yiin, L A. Glasgow, and L. E. Erickson; Kansas State University The Role of Domain E (Starch-Binding Region) on the Activity of a Bacillus macersns Cyclodextrln GlucanotransferaseHai-yin Chang, Trang Le, and Zivko L. Nikolov; Iowa State University Use of the Rotating Wall Vessel for Study of Plant Cell Suspension CulturesXinzhi Sun and James C. Linden; Colorado State University A Novel Counter-Current Distribution Apparatus for the Study of Multi-Stage Aqueous Two-Phase Extraction of Biomolecules and Cell ParticlesMartin R. Guinn and Paul Todd; University of Colorado The Dynamics of Unhooking and Contraction of a Polyelectrolyte Chain Around an Isolated PostLin Zhang and Edith M. Sevick; University of Colorado A Laboratory Study of the Fate of Trichloroathylene and 1,1,1-Trlchloroathane In the Presence of Alfalfa PlantsMuralidharan Narayanan, Ryan M. Green, Lawrence C. Davis, and Larry E. Erickson; Kansas State University Modeling the Fate of Pyrene In the RhIzosphereS.K. Santharam, LE. Erickson, and L. T. Fan; Kansas State University Derivatization of MaltooligosaccharidesDaniela Prinz, Peter J. Reilly, and Zivko L. Nikolov; Iowa State University Probing Surfactant-Protein Binding by EPA SpectroscopyNarendra B. Bam, Yale University; Theodore W. Randolph; University of Colorado Optimization of a Stir-Cell Bioreactor for In Vitro Production of RNANeal T. Williams, Kim A. Wicklund, and Robert H. Davis; University of Colorado

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With advances in the synthesis and design of chemical processes there is an increasing need for more complex mathematical models with which to screen the alternatives that constitute accurate and reliable process models. Despite the wide availability of sophisticated tools for simulation, optimization and synthesis of chemical processes, the user is frequently interested in using the ‘best available model’. However, in practice, these models are usually little more than a black box with a rigid input–output structure. In this paper we propose to tackle all these models using generalized disjunctive programming to capture the numerical characteristics of each model (in equation form, modular, noisy, etc.) and to deal with each of them according to their individual characteristics. The result is a hybrid modular–equation based approach that allows synthesizing complex processes using different models in a robust and reliable way. The capabilities of the proposed approach are discussed with a case study: the design of a utility system power plant that has been decomposed into its constitutive elements, each treated differently numerically. And finally, numerical results and conclusions are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, we analyze the effect of demand uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear program (MILP) with the unique feature of incorporating explicitly the demand uncertainty using scenarios with given probability of occurrence. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Superstructure approaches are the solution to the difficult problem which involves the rigorous economic design of a distillation column. These methods require complex initialization procedures and they are hard to solve. For this reason, these methods have not been extensively used. In this work, we present a methodology for the rigorous optimization of chemical processes implemented on a commercial simulator using surrogate models based on a kriging interpolation. Several examples were studied, but in this paper, we perform the optimization of a superstructure for a non-sharp separation to show the efficiency and effectiveness of the method. Noteworthy that it is possible to get surrogate models accurate enough with up to seven degrees of freedom.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Some issues have title: Transactions of American Institute of Chemical Engineers.