975 resultados para charged particle Brownian motion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation originated from work by Dr. A.H. McIlraith of the National Physical Laboratory who, in 1966, described a new type of charged particle oscillator. This makes use of two equal cylindrical electrodes to constrain the particles in such a way that they follow extremely long oscillatory paths between the electrodes under the influence of an electrostatic field alone. The object of this work has been to study the principle of the oscillator in detail and to investigate its properties and applications. Any device which is capable of creating long electron trajectories has potential application in the field of ultra high vacuum technology. It was therefore considered that a critical review of the problems associated with the production and measurement of ultra high vacuum was relevant in the initial stages of the work. The oscillator has been applied with a considerable degree of success as a high energy electrostatic ion source. This offers several advantages over existing ion sources. It can be operated at much lower pressures without the need of a magnetic field. The oscillator principle has also been applied as a thermionic ionization gauge and has been compared with other ionization gauges to pressures as low as 5 x 10- 11 torr.. This new gauge exhibited a number of advantages over most of the existing gauges. Finally the oscillator has been used in an evaporation ion pump and has exhibited fairly high pumping speeds for argon gas relative to those for nitrogen. This investigation supports the original work of Dr. A.H. McIlraith and shows that his proposed oscillator has considerable potential in the fields of vacuum technology and electron physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J65.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reálopciók a döntési rugalmasság megtestesítőiként jelen vannak a vállalatvezetők mindennapjaiban, és cégtől függően jelentős értéket képviselhetnek. Értékelésük a hagyományos diszkontált pénzáramlás módszerekkel csak korlátozottan lehetséges, ezért alternatívaként felmerül a pénzügyi opcióárazás módszertana, amelynek hagyományos változatai az alaptermék alakulásáról geometriai Brown-mozgást feltételeznek. A cikk ezt a feltevést veszi górcső alá a reálopciókra történő alkalmazás szempontjából, és megmutatja, hogy habár önkényesnek tűnhet, valójában nem pusztán egy matematikai szempontból kényelmes megoldás, hanem pénzügyileg is elfogadható feltétel. _______ Real options represent the fl exibility of decision-making, and are thus part of the everyday work of corporate executives, often having great value. Valuing them with the use of traditional Discounted Cash Flow models has limited relevance, therefore arises the alternative methodology of fi nancial option pricing, the traditional versions of which assume that the price of the underlying asset follows Geometric Brownian Motion. The paper examines this assumption from the aspect of real option valuation and shows that although it might seem arbitrary, it is not only a mathematically convenient choice, but also a fi nancially acceptable one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a charged Brownian gas with a non uniform bath temperature, and present a thermohydrodynamical picture. Expansion on the collision time probes the validity of the local equilibrium approach and the relevant thermodynamical variables. For the linear regime we present several applications (some novel).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a charged Brownian gas under the influence of external and non-uniform electric, magnetic and mechanical fields, immersed in a non-uniform bath temperature. With the collision time as an expansion parameter, we study the solution to the associated Kramers equation, including a linear reactive term. To the first order we obtain the asymptotic (overdamped) regime, governed by transport equations, namely: for the particle density, a Smoluchowski- reactive like equation; for the particle's momentum density, a generalized Ohm's-like equation; and for the particle's energy density, a MaxwellCattaneo-like equation. Defining a nonequilibrium temperature as the mean kinetic energy density, and introducing Boltzmann's entropy density via the one particle distribution function, we present a complete thermohydrodynamical picture for a charged Brownian gas. We probe the validity of the local equilibrium approximation, Onsager relations, variational principles associated to the entropy production, and apply our results to: carrier transport in semiconductors, hot carriers and Brownian motors. Finally, we outline a method to incorporate non-linear reactive kinetics and a mean field approach to interacting Brownian particles. © 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motion of a single Brownian particle of arbitrary size through a dilute colloidal dispersion of neutrally buoyant bath spheres of another characteristic size in a Newtonian solvent is examined in two contexts. First, the particle in question, the probe particle, is subject to a constant applied external force drawing it through the suspension as a simple model for active and nonlinear microrheology. The strength of the applied external force, normalized by the restoring forces of Brownian motion, is the Péclet number, Pe. This dimensionless quantity describes how strongly the probe is upsetting the equilibrium distribution of the bath particles. The mean motion and fluctuations in the probe position are related to interpreted quantities of an effective viscosity of the suspension. These interpreted quantities are calculated to first order in the volume fraction of bath particles and are intimately tied to the spatial distribution, or microstructure, of bath particles relative to the probe. For weak Pe, the disturbance to the equilibrium microstructure is dipolar in nature, with accumulation and depletion regions on the front and rear faces of the probe, respectively. With increasing applied force, the accumulation region compresses to form a thin boundary layer whose thickness scales with the inverse of Pe. The depletion region lengthens to form a trailing wake. The magnitude of the microstructural disturbance is found to grow with increasing bath particle size -- small bath particles in the solvent resemble a continuum with effective microviscosity given by Einstein's viscosity correction for a dilute dispersion of spheres. Large bath particles readily advect toward the minimum approach distance possible between the probe and bath particle, and the probe and bath particle pair rotating as a doublet is the primary mechanism by which the probe particle is able to move past; this is a process that slows the motion of the probe by a factor of the size ratio. The intrinsic microviscosity is found to force thin at low Péclet number due to decreasing contributions from Brownian motion, and force thicken at high Péclet number due to the increasing influence of the configuration-averaged reduction in the probe's hydrodynamic self mobility. Nonmonotonicity at finite sizes is evident in the limiting high-Pe intrinsic microviscosity plateau as a function of bath-to-probe particle size ratio. The intrinsic microviscosity is found to grow with the size ratio for very small probes even at large-but-finite Péclet numbers. However, even a small repulsive interparticle potential, that excludes lubrication interactions, can reduce this intrinsic microviscosity back to an order one quantity. The results of this active microrheology study are compared to previous theoretical studies of falling-ball and towed-ball rheometry and sedimentation and diffusion in polydisperse suspensions, and the singular limit of full hydrodynamic interactions is noted.

Second, the probe particle in question is no longer subject to a constant applied external force. Rather, the particle is considered to be a catalytically-active motor, consuming the bath reactant particles on its reactive face while passively colliding with reactant particles on its inert face. By creating an asymmetric distribution of reactant about its surface, the motor is able to diffusiophoretically propel itself with some mean velocity. The effects of finite size of the solute are examined on the leading order diffusive microstructure of reactant about the motor. Brownian and interparticle contributions to the motor velocity are computed for several interparticle interaction potential lengths and finite reactant-to-motor particle size ratios, with the dimensionless motor velocity increasing with decreasing motor size. A discussion on Brownian rotation frames the context in which these results could be applicable, and future directions are proposed which properly incorporate reactant advection at high motor velocities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiration-induced target motion is a major problem in intensity-modulated radiation therapy. Beam segments are delivered serially to form the total dose distribution. In the presence of motion, the spatial relation between dose deposition from different segments will be lost. Usually, this results in over-and underdosage. Besides such interplay effects between target motion and dynamic beam delivery as known from photon therapy, changes in internal density have an impact on delivered dose for intensity-modulated charged particle therapy. In this study, we have analysed interplay effects between raster scanned carbon ion beams and target motion. Furthermore, the potential of an online motion strategy was assessed in several simulations. An extended version of the clinical treatment planning software was used to calculate dose distributions to moving targets with and without motion compensation. For motion compensation, each individual ion pencil beam tracked the planned target position in the lateral aswell as longitudinal direction. Target translations and rotations, including changes in internal density, were simulated. Target motion simulating breathing resulted in severe degradation of delivered dose distributions. For example, for motion amplitudes of +/- 15 mm, only 47% of the target volume received 80% of the planned dose. Unpredictability of resulting dose distributions was demonstrated by varying motion parameters. On the other hand, motion compensation allowed for dose distributions for moving targets comparable to those for static targets. Even limited compensation precision (standard deviation similar to 2 mm), introduced to simulate possible limitations of real-time target tracking, resulted in less than 3% loss in dose homogeneity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small particles and their dynamics are of widespread interest due both to their unique properties and their ubiquity. Here, we investigate several classes of small particles: colloids, polymers, and liposomes. All these particles, due to their size on the order of microns, exhibit significant similarity in that they are large enough to be visualized in microscopes, but small enough to be significantly influenced by thermal (or Brownian) motion. Further, similar optical microscopy and experimental techniques are commonly employed to investigate all these particles. In this work, we develop single particle tracking techniques, which allow thorough characterization of individual particle dynamics, observing many behaviors which would be overlooked by methods which time or ensemble average. The various particle systems are also similar in that frequently, the signal-to-noise ratio represented a significant concern. In many cases, development of image analysis and particle tracking methods optimized to low signal-to-noise was critical to performing experimental observations. The simplest particles studied, in terms of their interaction potentials, were chemically homogeneous (though optically anisotropic) hard-sphere colloids. Using these spheres, we explored the comparatively underdeveloped conjunction of translation and rotation and particle hydrodynamics. Developing off this, the dynamics of clusters of spherical colloids were investigated, exploring how shape anisotropy influences the translation and rotation respectively. Transitioning away from uniform hard-sphere potentials, the interactions of amphiphilic colloidal particles were explored, observing the effects of hydrophilic and hydrophobic interactions upon pattern assembly and inter-particle dynamics. Interaction potentials were altered in a different fashion by working with suspensions of liposomes, which, while homogeneous, introduce the possibility of deformation. Even further degrees of freedom were introduced by observing the interaction of particles and then polymers within polymer suspensions or along lipid tubules. Throughout, while examination of the trajectories revealed that while by some measures, the averaged behaviors accorded with expectation, often closer examination made possible by single particle tracking revealed novel and unexpected phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerosol deposition in cylindrical tubes is a subject of interest to researchers and engineers in many applications of aerosol physics and metrology. Investigation of nano-particles in different aspects such as lungs, upper airways, batteries and vehicle exhaust gases is vital due the smaller size, adverse health effect and higher trouble for trapping than the micro-particles. The Lagrangian particle tracking provides an effective method for simulating the deposition of nano-particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. In this paper, the deposition of nano-particles in cylindrical tubes under laminar condition is studied using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different flow rates are examined. The point analysis in a uniform flow is performed for validating the Brownian motion. The results show good agreement between the calculated deposition efficiency and the analytic correlations in the literature. Furthermore, for the nano-particles with the diameter more than 40 nm, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solution to a version of the Stieltjes moment. problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geometric object detection has many applications, such as in tracking. Particle tracking microrheology is a technique for studying mechanical properties by accurately tracking the motion of the immersed particles undergoing Brownian motion. Since particles are carried along by these random undulations of the medium, they can move in and out of the microscope's depth of focus, which results in halos (lower intensity). Two-point particle tracking microrheology (TPM) uses a threshold to find those particles with peak, which leads to the broken trajectory of the particles. The halos of those particles which are out of focus are circles and the centres can be accurately tracked in most cases. When the particles are sparse, TPM will lose certain useful information. Thus, it may cause inaccurate microrheology. An efficient algorithm to detect the centre of those particles will increase the accuracy of the Brownian motion. In this paper, a hybrid approach is proposed which combines the steps of TPM for particles in focus with a circle detection step using circular Hough transform for particles with halos. As a consequence, it not only detects more particles in each frame but also dramatically extends the trajectories with satisfactory accuracy. Experiments over a video microscope data set of polystyrene spheres suspended in water undergoing Brownian motion confirmed the efficiency of the algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a charged Brownian gas under the influence of external, static and uniform electric and magnetic fields, immersed in a uniform bath temperature. We obtain the solution for the associated Langevin equation, and thereafter the evolution of the nonequilibrium temperature towards a nonequilibrium (hot) steady state. We apply our results to a simple yet relevant Brownian model for carrier transport in GaAs. We obtain a negative differential conductivity regime (Gunn effect) and discuss and compare our results with the experimental results. © 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)