924 resultados para chaîne de Markov


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans ce travail, nous présentons le résultat des recherches anthracologiques réalisées sur des sites archéologiques de haute montagne dans les Pyrénées orientales. Cette recherche s’insère dans un projet d’archéologie du paysage. Les zones d’étude se situent dans les Pré-Pyrénées sur le versant méridional de la chaîne du Cadí (vallée de la Vansa, Alt Urgell), et dans la vallée du Madriu, située dans les Pyrénées axiales, en Andorre. Le but principal de l’analyse anthracologique a été de connaître et comprendre la dynamique et la relation qui unissent les populations qui ont occupé ces vallées avec le milieu forestier de haute montagne. Les échantillons ont été récupérés sur des structures archéologiques associés à l’exploitation forestière (charbonnières, fours pour la fabrication de résine), au pastoralisme (cabanes et enclos) et à l’exploitation minière-métallurgique (four de grillage), avec une chronologie qui débute au Néolithique Ancien et finit à l’époque moderne et contemporaine (XVIII-XIXe siècles). Les résultats indiquent une variabilité taxonomique pauvre avec la présence majoritaire du Pinus et la présence ponctuelle d’autres espèces arbustives (Ericaceae et Juniperus) et arborées, comme Betula alba ou Abies alba. Différentes formations végétales de haute montagne ont été identifiées, selon leur localisation en versant ensoleillé ou ombragé, ainsi que leur altitude. Les résultats montrent des traces d’exploitation forestière dès le Néolithique Ancien, une intensification des activités à l’Antiquité, même si l’impact anthropique majeur correspond à l’activité de charbonnage d’époque moderne.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ground-penetrating radar (GPR) geophysical method has the potential to provide valuable information on the hydraulic properties of the vadose zone because of its strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR traveltime data can allow for a significant reduction in uncertainty regarding subsurface van Genuchten-Mualem (VGM) parameters. Much of the previous work on the stochastic estimation of VGM parameters from crosshole GPR data has considered the case of steady-state infiltration conditions, which represent only a small fraction of practically relevant scenarios. We explored in detail the dynamic infiltration case, specifically examining to what extent time-lapse crosshole GPR traveltimes, measured during a forced infiltration experiment at the Arreneas field site in Denmark, could help to quantify VGM parameters and their uncertainties in a layered medium, as well as the corresponding soil hydraulic properties. We used a Bayesian Markov-chain-Monte-Carlo inversion approach. We first explored the advantages and limitations of this approach with regard to a realistic synthetic example before applying it to field measurements. In our analysis, we also considered different degrees of prior information. Our findings indicate that the stochastic inversion of the time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions compared with the corresponding priors, which in turn significantly improves knowledge of soil hydraulic properties. Overall, the results obtained clearly demonstrate the value of the information contained in time-lapse GPR data for characterizing vadose zone dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inference of Markov random field images segmentation models is usually performed using iterative methods which adapt the well-known expectation-maximization (EM) algorithm for independent mixture models. However, some of these adaptations are ad hoc and may turn out numerically unstable. In this paper, we review three EM-like variants for Markov random field segmentation and compare their convergence properties both at the theoretical and practical levels. We specifically advocate a numerical scheme involving asynchronous voxel updating, for which general convergence results can be established. Our experiments on brain tissue classification in magnetic resonance images provide evidence that this algorithm may achieve significantly faster convergence than its competitors while yielding at least as good segmentation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the theory of hidden Markov models (HMM) isapplied to the problem of blind (without training sequences) channel estimationand data detection. Within a HMM framework, the Baum–Welch(BW) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedureassumes the model (i.e., the channel response) to be static throughoutthe observation sequence. By means of introducing a parametric model fortime-varying channel responses, a version of the algorithm, which is moreappropriate for mobile channels [time-dependent Baum-Welch (TDBW)] isderived. Aiming to compare algorithm behavior, a set of computer simulationsfor a GSM scenario is provided. Results indicate that, in comparisonto other Baum–Welch (BW) versions of the algorithm, the TDBW approachattains a remarkable enhancement in performance. For that purpose, onlya moderate increase in computational complexity is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this correspondence, we propose applying the hiddenMarkov models (HMM) theory to the problem of blind channel estimationand data detection. The Baum–Welch (BW) algorithm, which is able toestimate all the parameters of the model, is enriched by introducingsome linear constraints emerging from a linear FIR hypothesis on thechannel. Additionally, a version of the algorithm that is suitable for timevaryingchannels is also presented. Performance is analyzed in a GSMenvironment using standard test channels and is found to be close to thatobtained with a nonblind receiver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'Europe centrale fait à la fois figure d'interface et de plateforme sur le continent européen dans des jeux politiques et économiques. L'adhésion à l'Union européenne est porteuse d'espoir en termes de développement de territoires encore marqués par près de 50 ans de régime socialiste. L'intégration de ces territoires à la mondialisation a été insufflée avant tout par des acteurs économiques privés, les firmes multinationales, dès le milieu des années 1990. Par leurs capacités d'investissements et leurs organisations en réseaux à l'échelle mondiale, ces firmes multinationales participent majoritairement à ce processus d'intégration qui repose donc avant tout sur des raisons opportunistes et rationnelles. Les firmes multinationales ont positionné ces territoires dans les activités les plus profitables à l'organisation de leur « chaîne globale de valeur » mondiale. On peut dès lors s'interroger sur l'ampleur et les formes d'intégrations à la mondialisation qu'apportent ces implantations d'entreprises multinationales en particulier pour les villes d'Europe centrale. Dans une approche d'analyse empirique multi-niveaux, la thèse replace les villes d'Europe centrale dans la compétition mondiale des firmes multinationales du secteur automobile qui a particulièrement participé à l'intégration de ces territoires dans des stratégies industrielles mondiales. A un niveau micro, nous analysons les stratégies des firmes automobiles par leurs réseaux d'organisation financière dans une approche à la fois gestionnaire et quantitative. A un niveau méso/macro, nous positionnons les villes d'Europe centrale dans les systèmes de villes européen et mondiaux, selon le rôle attribué dans les chaînes globales de valeur. À chaque étape de cette recherche, l'analyse prend en compte différentes échelles spatiales (urbaine, régionale, nationale, continentale) et plusieurs niveaux d'analyse (micro : les réseaux individuels d'entreprises, méso : les liens intra-urbains, macro : les attractivités interurbaines) afin de souligner les interactions multi échelles qui intègrent chaque espace considéré. Cela nous permet d'évaluer en particulier la place des relations de l'ex-UE15 avec l'Europe centrale dans le contexte des réseaux mondiaux. Les formes transnationales des réseaux des entreprises multinationales, se déployant dans un système de lieux identifiés (métropoles ou villes) sont replacées dans les logiques internationales d'accords bilatéraux, de réglementations régionales et de politiques d'attraction (comme fiscales) ou de soutien au développement (aides nationales ou européennes). L'approche empirique multi échelles, articule les différentes dimensions des stratégies de localisation des entreprises déployées dans leur approche du développement et de la stabilisation de leur chaine globale de valeur, avec les positions relatives des territoires et villes à différents niveaux d'intégration. Ainsi la thèse offre une vision originale de l'articulation des développements locaux des territoires face aux stratégies globales des entreprises.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mimicry is a central plank of the emotional contagion theory; however, it was only tested with facial and postural emotional stimuli. This study explores the existence of mimicry in voice-to-voice communication by analyzing 8,747 sequences of emotional displays between customers and employees in a call-center context. We listened live to 967 telephone inter-actions, registered the sequences of emotional displays, and analyzed them with a Markov chain. We also explored other propositions of emotional contagion theory that were yet to be tested in vocal contexts. Results supported that mimicry is significantly present at all levels. Our findings fill an important gap in the emotional contagion theory; have practical implications regarding voice-to-voice interactions; and open doors for future vocal mimicry research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Financial time series have a tendency of abruptly changing their behavior and maintain this behavior for several consecutive periods, and commodity futures returns are not an exception. This quality proposes that nonlinear models, as opposed to linear models, can more accurately describe returns and volatility. Markov regime switching models are able to match this behavior and have become a popular way to model financial time series. This study uses Markov regime switching model to describe the behavior of energy futures returns on a commodity level, because studies show that commodity futures are a heterogeneous asset class. The purpose of this thesis is twofold. First, determine how many regimes characterize individual energy commodities’ returns in different return frequencies. Second, study the characteristics of these regimes. We extent the previous studies on the subject in two ways: We allow for the possibility that the number of regimes may exceed two, as well as conduct the research on individual commodities rather than on commodity indices or subgroups of these indices. We use daily, weekly and monthly time series of Brent crude oil, WTI crude oil, natural gas, heating oil and gasoil futures returns over 1994–2014, where available, to carry out the study. We apply the likelihood ratio test to determine the sufficient number of regimes for each commodity and data frequency. Then the time series are modeled with Markov regime switching model to obtain the return distribution characteristics of each regime, as well as the transition probabilities of moving between regimes. The results for the number of regimes suggest that daily energy futures return series consist of three to six regimes, whereas weekly and monthly returns for all energy commodities display only two regimes. When the number of regimes exceeds two, there is a tendency for the time series of energy commodities to form groups of regimes. These groups are usually quite persistent as a whole because probability of a regime switch inside the group is high. However, individual regimes in these groups are not persistent and the process oscillates between these regimes frequently. Regimes that are not part of any group are generally persistent, but show low ergodic probability, i.e. rarely prevail in the market. This study also suggests that energy futures return series characterized with two regimes do not necessarily display persistent bull and bear regimes. In fact, for the majority of time series, bearish regime is considerably less persistent. Rahoituksen aikasarjoilla on taipumus arvaamattomasti muuttaa käyttäytymistään ja jatkaa tätä uutta käyttäytymistä useiden periodien ajan, eivätkä hyödykefutuurien tuotot tee tähän poikkeusta. Tämän ominaisuuden johdosta lineaaristen mallien sijasta epälineaariset mallit pystyvät tarkemmin kuvailemaan esimerkiksi tuottojen jakauman parametreja. Markov regiiminvaihtomallit pystyvät vangitsemaan tämän ominaisuuden ja siksi niistä on tullut suosittuja rahoituksen aikasarjojen mallintamisessa. Tämä tutkimus käyttää Markov regiiminvaihtomallia kuvaamaan yksittäisten energiafutuurien tuottojen käyttäytymistä, sillä tutkimukset osoittavat hyödykefutuurien olevan hyvin heterogeeninen omaisuusluokka. Tutkimuksen tarkoitus on selvittää, kuinka monta regiimiä tarvitaan kuvaamaan energiafutuurien tuottoja eri tuottofrekvensseillä ja mitkä ovat näiden regiimien ominaisuudet. Aiempaa tutkimusta aiheesta laajennetaan määrittämällä regiimien lukumäärä tilastotieteellisen testauksen menetelmin sekä tutkimalla energiafutuureja yksittäin; ei indeksi- tai alaindeksitasolla. Tutkimuksessa käytetään päivä-, viikko- ja kuukausiaikasarjoja Brent-raakaöljyn, WTI-raakaöljyn, maakaasun, lämmitysöljyn ja polttoöljyn tuotoista aikaväliltä 1994–2014, siltä osin kuin aineistoa on saatavilla. Likelihood ratio -testin avulla estimoidaan kaikille aikasarjoille regiimien määrä,jonka jälkeen Markov regiiminvaihtomallia hyödyntäen määritetään yksittäisten regiimientuottojakaumien ominaisuudet sekä regiimien välinen transitiomatriisi. Tulokset regiimien lukumäärän osalta osoittavat, että energiafutuurien päiväkohtaisten tuottojen aikasarjoissa regiimien lukumäärä vaihtelee kolmen ja kuuden välillä. Viikko- ja kuukausituottojen kohdalla kaikkien energiafutuurien prosesseissa regiimien lukumäärä on kaksi. Kun regiimejä on enemmän kuin kaksi, on prosessilla taipumus muodostaa regiimeistä koostuvia ryhmiä. Prosessi pysyy ryhmän sisällä yleensä pitkään, koska todennäköisyys siirtyä ryhmään kuuluvien regiimien välillä on suuri. Yksittäiset regiimit ryhmän sisällä eivät kuitenkaan ole kovin pysyviä. Näin ollen prosessi vaihtelee ryhmän sisäisten regiimien välillä tiuhaan. Regiimit, jotka eivät kuulu ryhmään, ovat yleensä pysyviä, mutta prosessi ajautuu niihin vain harvoin, sillä todennäköisyys siirtyä muista regiimeistä niihin on pieni. Tutkimuksen tulokset osoittavat myös, että prosesseissa, joita ohjaa kaksi regiimiä, nämä regiimit eivät välttämättä ole pysyvät bull- ja bear-markkinatilanteet. Tulokset osoittavat sen sijaan, että bear-markkinatilanne on energiafutuureissa selvästi vähemmän pysyvä.