86 resultados para ceruloplasmin
Resumo:
Cu is an essential nutrient for man, but can be toxic if intakes are too high. In sensitive populations, marginal over- or under-exposure can have detrimental effects. Malnourished children, the elderly, and pregnant or lactating females may be susceptible for Cu deficiency. Cu status and exposure in the population can currently not be easily measured, as neither plasma Cu nor plasma cuproenzymes reflect Cu status precisely. Some blood markers (such as ceruloplasmin) indicate severe Cu depletion, but do not inversely respond to Cu excess, and are not suitable to indicate marginal states. A biomarker of Cu is needed that is sensitive to small changes in Cu status, and that responds to Cu excess as well as deficiency. Such a marker will aid in monitoring Cu status in large populations, and will help to avoid chronic health effects (for example, liver damage in chronic toxicity, osteoporosis, loss of collagen stability, or increased susceptibility to infections in deficiency). The advent of high-throughput technologies has enabled us to screen for potential biomarkers in the whole proteome of a cell, not excluding markers that have no direct link to Cu. Further, this screening allows us to search for a whole group of proteins that, in combination, reflect Cu status. The present review emphasises the need to find sensitive biomarkers for Cu, examines potential markers of Cu status already available, and discusses methods to identify a novel suite of biomarkers.
Resumo:
BACKGROUND ; AIMS: Iron perturbations are frequently observed in nonalcoholic fatty liver disease (NAFLD). We aimed to investigate a potential association of copper status with disturbances of iron homeostasis in NAFLD. METHODS: We retrospectively studied 140 NAFLD patients and 25 control subjects. Biochemical and hepatic iron and copper parameters were analyzed. Hepatic expression of iron regulatory molecules was investigated in liver biopsy specimens by reverse-transcription polymerase chain reaction and Western blot analysis. RESULTS: NAFLD patients had lower hepatic copper concentrations than control subjects (21.9 +/- 9.8 vs 29.6 +/- 5.1 microg/g; P = .002). NAFLD patients with low serum and liver copper concentrations presented with higher serum ferritin levels (606.7 +/- 265.8 vs 224.2 +/- 176.0 mg/L; P < .001), increased prevalence of siderosis in liver biopsy specimens (36/46 vs 10/47 patients; P < .001), and with elevated hepatic iron concentrations (1184.4 +/- 842.7 vs 319.9 +/- 451.3 microg/g; P = .020). Lower serum concentrations of the copper-dependent ferroxidase ceruloplasmin (21.7 +/- 4.1 vs 30.4 +/- 6.4 mg/dL; P < .001) and decreased liver ferroportin (FP-1; P = .009) messenger RNA expression were found in these patients compared with NAFLD patients with high liver or serum copper concentrations. Accordingly, in rats, a reduced dietary copper intake was paralleled by a decreased hepatic FP-1 protein expression. CONCLUSIONS: A significant proportion of NAFLD patients should be considered copper deficient. Our results indicate that copper status is linked to iron homeostasis in NAFLD, suggesting that low copper bioavailability causes increased hepatic iron stores via decreased FP-1 expression and ceruloplasmin ferroxidase activity thus blocking liver iron export in copper-deficient subjects.
Resumo:
The emergence of ocean acidification as a significant threat to calcifying organisms in marine ecosystems creates a pressing need to understand the physiological and molecular mechanisms by which calcification is affected by environmental parameters. We report here, for the first time, changes in gene expression induced by variations in pH/pCO2 in the widespread and abundant coccolithophore Emiliania huxleyi. Batch cultures were subjected to increased partial pressure of CO2 (pCO2; i.e. decreased pH), and the changes in expression of four functional gene classes directly or indirectly related to calcification were investigated. Increased pCO2 did not affect the calcification rate and only carbonic anhydrase transcripts exhibited a significant down-regulation. Our observation that elevated pCO2 induces only limited changes in the transcription of several transporters of calcium and bicarbonate gives new significant elements to understand cellular mechanisms underlying the early response of E. huxleyi to CO2-driven ocean acidification.
Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development
Resumo:
The trace metal copper (Cu) plays an essential role in biology as a cofactor for many enzymes that include Cu, Zn superoxide dismutase, cytochrome oxidase, ceruloplasmin, lysyl oxidase, and dopamine β-hydroxylase. Consequently, Cu transport at the cell surface and the delivery of Cu to intracellular compartments are critical events for a wide variety of biological processes. The components that orchestrate intracellular Cu trafficking and their roles in Cu homeostasis have been elucidated by the studies of model microorganisms and by the characterizations of molecular basis of Cu-related genetic diseases, including Menkes disease and Wilson disease. However, little is known about the mechanisms for Cu uptake at the plasma membrane and the consequences of defects in this process in mammals. Here, we show that the mouse Ctr1 gene encodes a component of the Cu transport machinery and that mice heterozygous for Ctr1 exhibit tissue-specific defects in copper accumulation and in the activities of copper-dependent enzymes. Mice completely deficient for Ctr1 exhibit profound growth and developmental defects and die in utero in mid-gestation. These results demonstrate a crucial role for Cu acquisition through the Ctr1 transporter for mammalian Cu homeostasis and embryonic development.
Resumo:
Ceruloplasmin is an abundant alpha 2-serum glycoprotein that contains 95% of the copper found in the plasma of vertebrate species. We report here on the identification of a genetic defect in the ceruloplasmin gene in a patient previously noted to have a total absence of circulating serum ceruloplasmin in association with late-onset retinal and basal ganglia degeneration. In this patient T2 (transverse relaxation time)-weighted magnetic resonance imaging of the brain revealed basal ganglia densities consistent with iron deposition, and liver biopsy confirmed the presence of excess iron. Although Southern blot analysis of the patient's DNA was normal, PCR amplification of 18 of the 19 exons composing the human ceruloplasmin gene revealed a distinct size difference in exon 7. DNA sequence analysis of this exon revealed a 5-bp insertion at amino acid 410, resulting in a frame-shift mutation and a truncated open reading frame. The validity of this mutation was confirmed by analysis of DNA from the patient's daughter, which revealed heterozygosity for this same 5-bp insertion. The presence of this mutation in conjunction with the clinical and pathologic findings demonstrates an essential role for ceruloplasmin in human biology and identifies aceruloplasminemia as an autosomal recessive disorder of iron metabolism. These findings support previous studies that identified ceruloplasmin as a ferroxidase and are remarkably consistent with recent studies on the essential role of a homologous copper oxidase in iron metabolism in yeast. The clinical and laboratory findings suggest that additional patients with movement disorders and nonclassical Wilson disease should be examined for ceruloplasmin gene mutations.
Resumo:
Copper and iron metabolism intersect in mammals. Copper deficiency simultaneously leads to decreased iron levels in some tissues and iron deficiency anemia, whereas it results in iron overload in other tissues such as the intestine and liver. The copper requirement of the multicopper ferroxidases hephaestin and ceruloplasmin likely explains this link between copper and iron homeostasis in mammals. We investigated the effect of in vivo and in vitro copper deficiency on hephaestin (Heph) expression and activity. C57BL/6J mice were separated into 2 groups on the day of parturition. One group was fed a copper-deficient diet and another was fed a control diet for 6 wk. Copper-deficient mice had significantly lower hephaestin and ceruloplasmin (~50% of controls) ferroxidase activity. Liver hepcidin expression was significantly downregulated by copper deficiency (~60% of controls), and enterocyte mRNA and protein levels of ferroportin1 were increased to 2.5 and 10 times, respectively, relative to controls, by copper deficiency, indicating a systemic iron deficiency in the copper-deficient mice. Interestingly, hephaestin protein levels were significantly decreased to ~40% of control, suggesting that decreased enterocyte copper content leads to decreased hephaestin synthesis and/or stability. We also examined the effect of copper deficiency on hephaestin in vitro in the HT29 cell line and found dramatically decreased hephaestin synthesis and activity. Both in vivo and in vitro studies indicate that copper is required for the proper processing and/or stability of hephaestin.
Resumo:
The dog-eating fox (Cerdocyon thous - Linnaeus, 1766) is a medium sized canid widely distributed in South America and occurs in almost all of Brazil. Among the main threats to their conservation are the roadkill mainly caused by habitat loss. The shortage of laboratory bush dogs data affect the veterinary medical care hindering the application of appropriate therapies. This study aimed to evaluate the levels of C-reactive protein, albumin, pre-albumin, ceruloplasmin, haptoglobin and Afla 1 acid glycoprotein and the Prognostic Index Inflammatory Nutritional (IPIN) in this species, thus obtaining a first description of these prognostic markers. They collected 1.5 ml of blood by jugular access 8 of Mato Dogs copies (thous thous) from the Laboratory of collection of Teaching and Research in Wildlife (limpets), Faculty of Veterinary Medicine, Federal University of Uberlândia for exams routine. The samples were collected via the jugular vein after physical restraint of animals and trichotomy of the region. After statistical analysis, the values were: albumin: between 2.7 and 3.0 g / dl, alpha 1-acid glycoprotein: between 0.19 and 0.21 g / l, C-reactive protein: between 1.7 and 2 2, prealbumin between 30 and 35 mg / l haptoglobin: between 0.078 and 0.156 and IPIN ≤ 0.006 being considered normal and values ≥ 0.006 considered high. This press description will serve as a basis for studies where animals may be used with specific diseases and, after analysis, compared with the values found in this study and verified the behavior follows the likeness of domestic dogs.
Resumo:
A woman aged 22 years presented with a 3-year history of jerks when brushing her teeth and a tremor when carrying drinks. Examination revealed a bilateral jerky tremor, stimulus-sensitive myoclonus, and difficulty with tandem gait. Thyroid and liver function test results were normal, but she had rapidly progressive renal failure. Serum copper, ceruloplasmin, and manganese levels were normal, but her urinary copper level was elevated on 2 occasions. Pathological findings on organ biopsy prompted genetic testing to confirm the diagnosis. The differential diagnosis, tissue biopsy findings, and final genetic diagnosis are discussed.
Resumo:
Recentemente tem-se assistido a um acumular de evidência sugerindo a implicação de uma desregulação do metabolismo do ferro (Fe) na fisiopatologia da doença de Alzheimer (DA). Neste trabalho, pretendemos esclarecer melhor os mecanismos moleculares subjacentes à homeostasia deste metal na DA, particularmente ao nível do efluxo celular. Assim, mediu-se em células mononucleares do sangue periférico de 73 doentes com DA e 74 controlos a expressão de genes diretamente envolvidos na regulação e exportação celular de Fe, utilizando a técnica de PCR quantitativo. Os resultados mostraram uma diminuição significativa na expressão dos genes aconitase (ACO1; P=0,007); ceruloplasmina (CP; P<0,001) e proteína precursora de beta amilóide (APP; P=0,006) em doentes com DA comparativamente com os voluntários saudáveis. Estas observações apontam para uma diminuição significativa da expressão dos genes associados com a exportação de Fe celular mediada pela ferroportina na DA. Assim, o presente estudo reforça resultados anteriores que mostram alterações no metabolismo do Fe e podem estar na origem da retenção intracelular deste metal e aumento de stress oxidativo caraterísticos desta patologia.
Resumo:
Acute phase proteins (APPs) are proteins synthesised predominantly in the liver, whose plasma concentrations increase (positive APP) or decrease (negative APP) as a result of infection, inflammation, trauma and tissue injury. They also change as a result of the introduction of immunogens such as bacterial lipopolysaccharide (LPS), turpentine and vaccination. While publications on APPs in chickens are numerous, the limited availability of anti-sera and commercial ELISAs has resulted in a lot of information on only a few APPs. Disease is a threat to the poultry industry, as pathogens have the potential to evolve, spread and cause rapid onset of disease that is detrimental to the welfare of birds. Low level, sub-acute disease with non-specific, often undiagnosed causes can greatly affect bird health and growth and impact greatly on productivity and profitability. Developing and validating methods to measure and characterise APPs in chickens will allow these proteins to be used diagnostically for monitoring flock health. Using immune parameters such as APPs that correlate with disease resistance or improvements in production and welfare will allow the use of APPs as selection parameters for breeding to be evaluated. For APPs to be useful parameters on which to evaluate chicken health, information on normal APP concentrations is required. Ceruloplasmin (Cp) and PIT54 concentrations were found to be much lower in healthy birds form commercial production farms than the reported normal values obtained from the literature. These APPs were found to be significantly higher in culled birds from a commercial farm and Cp, PIT54 and ovotransferrin (Ovt) were significantly higher in birds classified as having obvious gait defects. Using quantitative shotgun proteomics to identify the differentially abundant proteins between three pools: highly acute phase (HAP), acute phase (AP) and non-acute phase (NAP), generated data from which a selection of proteins, based on the fold difference between the three pools was made. These proteins were targeted on a individual samples alongside proteins known to be APPs in chickens or other species: serum amyloid A (SAA), C-reactive protein (CRP), Ovt, apolipoprotein A-I (apo-AI), transthyretin (Ttn), haemopexin (Hpx) and PIT54. Together with immunoassay data for SAA, Ovt, alpha-1-acid glycoprotein (AGP) and Cp the results of this research reveal that SAA is the only major APP in chickens. Ovotransferrin and AGP behave as moderate APPs while PIT54 and Cp are minor APPs. Haemopexin was not significantly different between the three acute phase groups. Apolipoprotein AI and Ttn were significantly lower in the HAP and AP groups and as such can be classed as negative APPs. In an effort to identify CRP, multiple anti-sera cross reacting with CRP from other species were used and a phosphorylcholine column known to affinity purify CRP were used. Enriched fractions containing low molecular weight proteins, elutions from the affinity column together with HAP, AP and NAP pooled samples were applied to a Q-Exactive Hybrid Quadrupole–Orbitrap mass spectrometer (Thermo Scientific) for Shotgun analysis and CRP was not identified. It would appear that CRP is not present as a plasma protein constitutively or during an APR in chickens and as such is not an APP in this species. Of the proteins targeted as possible novel biomarkers of the APR in chickens mannan binding lectin associated serine protease-2, α-2-HS-glycoprotein (fetuin) and major facilitator superfamily domain-containing protein 10 were reduced in abundance in the HAP group, behaving as negative biomarkers. Myeloid protein and putative ISG(12)2 were positively associated with the acute phase being significantly higher in the HAP and AP groups. The protein cathepsin D was significantly higher in both HAP and AP compared to the NAP indicating that of all the proteins targeted, this appears to have the most potential as a biomarker of the acute phase, as it was significantly increased in the AP as well as the HAP group. To evaluate APPs and investigate biomarkers of intestinal health, a study using re-used poultry litter was undertaken. The introduction of litter at 12 days of age did not significantly increase any APPs measured using immunoassays and quantitative proteomics at 3, 6 and 10 days post introduction. While no APP was found to be significantly different between the challenged and control groups at anytime point, the APPs AGP, SAA and Hpx did increase over time in all birds. The protein apolipoprotein AIV (apo-AIV) was targeted as a possible APP and because of its reported role in controlling satiety. An ELISA was developed, successfully validated and used to measure apo-AIV in this study. While no significant differences in apo-AIV plasma concentrations between challenged and control groups were identified apo-AIV plasma concentrations did change significantly between certain time points in challenged and control groups. Apoliporotein AIV does not appear to behave as an APP in chickens, as it was not significantly different between acute phase groups. The actin associated proteins villin and gelsolin were investigated as possible biomarkers of intestinal health. Villin was found not to be present in the plasma of chickens and as such not a biomarker target. Gelsolin was found not to be differentially expressed during the acute phase or as a result of intestinal challenge. Finally a proteomic approach was undertaken to investigate gastrocnemius tendon (GT) rupture in broiler chickens with a view of elucidating to and identify proteins associated with risk of rupture. A number of proteins were found to be differentially expressed between tendon pools and further work would enable further detailing of these findings. In conclusion this work has made a number of novel findings and addressed a number of data poor areas. The area of chicken APPs research has stagnated over the last 15 years with publications becoming repetitive and reliant on a small number of immunoassays. This work has sought to characterise the classic APPs in chickens, and use a quantitative proteomic approach to measure and categorise them. This method was also used to take a fresh approach to biomarker identification for both the APR and intestinal health. The development and validation of assays for Ovt and apo-AIV and the shotgun data mean that these proteins can be further characterised in chickens with a view of applying their measurement to diagnostics and selective breeding programs.
Resumo:
2016