940 resultados para cerâmicos tradicionais
Resumo:
The development and study of detectors sensitive to flammable combustible and toxic gases at low cost is a crucial technology challenge to enable marketable versions to the market in general. Solid state sensors are attractive for commercial purposes by the strength and lifetime, because it isn t consumed in the reaction with the gas. In parallel, the use of synthesis techniques more viable for the applicability on an industrial scale are more attractive to produce commercial products. In this context ceramics with spinel structure were obtained by microwave-assisted combustion for application to flammable fuel gas detectors. Additionally, alternatives organic-reducers were employed to study the influence of those in the synthesis process and the differences in performance and properties of the powders obtained. The organic- reducers were characterized by Thermogravimetry (TG) and Derivative Thermogravimetry (DTG). After synthesis, the samples were heat treated and characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), analysis by specific area by BET Method and Scanning Electron Microscopy (SEM). Quantification of phases and structural parameters were carried through Rietveld method. The methodology was effective to obtain Ni-Mn mixed oxides. The fuels influenced in obtaining spinel phase and morphology of the samples, however samples calcined at 950 °C there is just the spinel phase in the material regardless of the organic-reducer. Therefore, differences in performance are expected in technological applications when sample equal in phase but with different morphologies are tested
Resumo:
The present work has as objective the development of ceramic pigments based in iron oxides and cobalt through the polymeric precursor method, as well as study their characteristics and properties using methods of physical, chemical, morphological and optical characterizations.In this work was used iron nitrate, and cobalt citrate as precursor and nanometer silica as a matrix. The synthesis was based on dissolving the citric acid as complexing agent, addition of metal oxides, such as chromophores ions and polymerization with ethylene glycol. The powder obtained has undergone pre-ignition, breakdown and thermal treatments at different calcination temperatures (700 °C, 800 °C, 900 °C, 1000 °C and 1100 °C). Thermogravimetric analyzes were performed (BT) and Differential Thermal Analysis (DTA), in order to evaluate the term decomposition of samples, beyond characterization by techniques such as BET, which classified as microporous materials samples calcined at 700 ° C, 800 º C and 900 º C and non-porous when annealed at 1000 ° C and 1100 º C, X-ray diffraction (XRD), which identified the formation of two crystalline phases, the Cobalt Ferrite (CoFe2O4) and Cristobalite (SiO2), Scanning Electron Microscopy (SEM) revealed the formation of agglomerates of particles slightly rounded;and Analysis of Colorimetry, temperature of 700 °C, 800 °C and 900 °C showed a brown color and 1000 °C and 1100 °C violet
Resumo:
Piauí state is a major producer of traditional red ceramic burning as bricks, tiles and ceramic tiles, with its main production center located in the city of Teresina. The state has large reserves of raw materials that can be used in the ceramic coating as clays, quartz, talc and carbonates. However, in the preparation of ceramic bodies using only a mixture of clays with different characteristics. The study aims to evaluate the effect of adding two types of carbonates in the ceramic semiporous mass coating produced in Piauí and then to verify the potential use of these carbonates as supplementary raw material product manufactured or the feasibility of obtaining a ceramic plate that meets the specifications for the porous coating. For this, were characterized the ceramic Piauí coating mass, a calcitic carbonate and a dolomitic, were made in the levels of 2, 4, 8, 16, and 32%. The masses were formed by pressing and burneds in two environments: a laboratory furnace (1080°C, 1120°C, 1140°C, and 1160°C) and an industrial furnace (1140°C). Then, following tests of linear shrinkage water absorption, apparent porosity, bulk density and flexural strength. Furthermore, the fired specimens were tested for their macrostructure and microstructure. The results showed the possibility of using the carbonate in ceramic mass flooring produced in Piauí, as added in small proportions improved dimensional stability and increased mechanical strength of ceramics pieces. It also proved itself possible to produce porous coating when added in higher levels
Resumo:
Ceramic filters are cellular structures that can be produced by various techniques, among which we highlight the replication method, or method of polymeric sponge. This method consists of impregnating polymeric foam with ceramic slurry, followed by heat treatment, where will occur decomposition of organic material and the sinter of the ceramic material, resulting in a ceramic whose structure is a replica of the impregnated sponge. Ceramic filters have specific properties that make this type of material very versatile, used in various technological applications such as filters for molten metals and burners, make these materials attractive candidates for high temperature applications. In this work we studied the systems Al2O3-LZSA ceramic filters processed in the laboratory, and commercial Al2O3-SiC ceramics filters, both obtained by the replica method, this work proposes the thermal and mechanical characterization. The sponge used in the processing of filters made in the laboratory was characterized by thermogravimetric analysis. The ceramic filters were characterized by compressive strength, flexural strength at high temperatures, thermal shock, permeability and physical characterization (density and porosity) and microstructural (MEV and X-rays). From the results obtained, the analysis was made of the mechanical behavior of these materials, comparing the model proposed by Gibson and Ashby model and modified the effective area and the tension adjusted, where the modified model adapted itself better to the experimental results, representing better the mechanical behavior of ceramic filters obtained by the replica method
Resumo:
Alternative and clean energy generation research has been intensified in last decades. Among the alternatives, fuel cells are one of the most important. There are different types of fuel cells, among which stands out intermediate temperature solid oxide fuel cell (IT-SOFC) matter of the present work. For application as cathode on this type of devices, the ceramic Ba0.5Sr0.5C0.8Fe0.2O3-δ doped with rare earth ions (Nd, Sm) have been quite promising because they show good ionic conductivity and operate at relatively low temperatures (500 - 800°C). In this work, Ba0.5Sr0.5Co0.8Fe0.2O3-δ, (BaSr)0.5Sm0.5Co0.8Fe0.2O3-δ and (BaSr)0.5Nd0.5C0.8Fe0.2O3-δ were obtained by modified Pechini method, making use of gelatin as polymerizing agent. The powders were characterized by X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). The perovskite phase was observed in all X-ray patterns for the materials Ba0.5Sr0.5C0.8Fe0.2O3-δ doped with rare earth ions (Nd, Sm). The SEM images showed that the materials have a characteristics porous, with very uniform pore distribution, which are favorable for application as cathodes. Subsequently, screen-printed assymmetrical cells were studied by impedance spectroscopy, to assess the kinetics of the cathode for the reduction reaction of oxygen. The best resistance to the specific area was found for the cathode BSSCF sintered at 1050 °C for 4 hours with around 0.15 Ω.cm2 at 750 °C as well as cathodes BSNCF and BSCF obtained resistances specific area of 0.2 and 0.73 Ω.cm2, respectively, for the same conditions. The polarization curves showed similar behavior to the best cathodes BSSCF and BSNCF, such combination of properties indicates that the film potentially depict good performance as IT-SOFC cathodes
Resumo:
Metal-ceramic interfaces are present in tricone drill bits with hard ceramic inserts for oil well drilling operations. The combination of actions of cutting, crushing and breaking up of rocks results in the degradation of tricone drill bits by wear, total or partial rupture of the drill bit body or the ceramic inserts, thermal shock and corrosion. Also the improper pressfitting of the ceramic inserts on the bit body may cause its total detachment, and promote serious damages to the drill bit. The improvement on the production process of metal-ceramic interfaces can eliminate or minimize some of above-mentioned failures presented in tricone drill bits, optimizing their lifetime and so reducing drilling metric cost. Brazing is a widely established technique to join metal-ceramic materials, and may be an excellent alternative to the common mechanical press fitting process of hard ceramic inserts on the steel bit body for tricone drill bit. Wetting phenomena plays an essential role in the production of metal/ceramic interfaces when a liquid phase is present in the process. In this work, 72Silver-28Copper eutectic based brazing alloys were melted onto zirconia, silicon nitride and tungsten carbide/Co substrates under high vacuum. Contact angle evolution was measured and graphically plotted, and the interfaces produced were analysed by SEM-EDX. The AgCu eutectic alloy did not wet any ceramic substrates, showing high contact angles, and so without chemical interaction between the materials. Better results were found for the systemns containing 3%wt of titanium in the AgCu alloy. The presence os titanium as a solute in the alloy produces wettable cand termodinamically stable compounds, increasing the ceramics wetting beahviour
Resumo:
The search for ever smaller device and without loss of performance has been increasingly investigated by researchers involving applied electromagnetics. Antennas using ceramics materials with a high dielectric constant, whether acting as a substract element of patch radiating or as the radiant element are in evidence in current research, that due to the numerous advantages offered, such as: low profile, ability to reduce the its dimensions when compared to other devices, high efficiency of ratiation, suitability the microwave range and/or millimeter wave, low temperature coefficient and low cost. The reason for this high efficiency is that the dielectric losses of ceramics are very low when compared to commercially materials sold used in printed circuit boards, such as fiberglass and phenolite. These characteristics make ceramic devices suitable for operation in the microwave band. Combining the design of patch antennas and/or dielectric resonator antenna (DRA) to certain materials and the method of synthesis of these powders in the manufacture of devices, it s possible choose a material with a dielectric constant appropriate for the design of an antenna with the desired size. The main aim of this work is the design of patch antennas and DRA antennas on synthesis of ceramic powders (synthesis by combustion and polymeric precursors - Pe- chini method) nanostructured with applications in the microwave band. The conventional method of mix oxides was also used to obtain nanometric powders for the preparation of tablets and dielectric resonators. The devices manufactured and studied on high dielectric constant materials make them good candidates to have their small size compared to other devices operating at the same frequency band. The structures analyzed are excited by three different techniques: i) microstrip line, ii) aperture coupling and iii) inductive coupling. The efficiency of these techniques have been investigated experimentally and compared with simulations by Ansoft HFSS, used in the accurate analysis of the electromagnetic behavior of antennas over the finite element method (FEM). In this thesis a literature study on the theory of microstrip antennas and DRA antenna is performed. The same study is performed about the materials and methods of synthesis of ceramic powders, which are used in the manufacture of tablets and dielectric cylinders that make up the devices investigated. The dielectric media which were used to support the analysis of the DRA and/or patch antennas are analyzed using accurate simulations using the finite difference time domain (FDTD) based on the relative electrical permittivity (er) and loss tangent of these means (tand). This work also presents a study on artificial neural networks, showing the network architecture used and their characteristics, as well as the training algorithms that were used in training and modeling some parameters associated with the devices investigated
Resumo:
The potential market of the metropolitan area of Salvador accounts for the estimated consumption of roughly 800 million horizontally perforated extruded clay bricks a year. The growing demand of consumers along with the competitiveness of the structural ceramic sector has driven forward a number of recent efforts and investments towards improving the quality of structural ceramics. In this scenario, the present study focused on sampling and evaluating the conformity of 8-hole horizontally perforated extruded clay bricks manufactured by different plants (A, B and C) in the metropolitan area of Salvador. In addition, representative clay and sandy-clay materials were collected from each plant and characterized by conventional physical, chemical and mineralogical techniques. Finally, experimental compositions designated as A, B and C, according to the source, were prepared by mixing different contents of the raw materials collected in the plants, fired at different temperatures and characterized. The results revealed a series of non conformities regarding ABNT guidelines. The characterization of raw materials revealed the presence of kaolinite and ilite in concentrations ranging from 64 to 90 wt.% along with free quartz (10 - 25%). The sandy-clay samples consisted basically of kaolinite. All raw materials depicted low contents of organics, amorphous constituents, alkaline oxides and feldspar. An analysis of the firing behavior of all different ceramic compositions revealed that the linear contraction of composition A was rather significant considering the temperature range evaluated, and it justifies the significant dimensional non conformity that was shown by bricks made with the ceramic A
Resumo:
The study of the physical and mechanic properties is an analysis of unquestioned importance on the production of the ceramic materials. In the region of the Recôncavo Baiano, there are ceramic and small brick factories, that still use rudimentary techniques, where the necessity of characterization of raw materials is denounced by the quality of the final product. The present work has for objective to study the behavior of the clay proceeding from the region of the Recôncavo, between the cities of Candeias and Camaçari/Ba, with addition of 5, 10 and 15% by weight of brick scraps, trying to optimize the physic and mechanical properties of the final product, aiming a better possibility of being manufactured, mechanic resistance, low linear retraction and water absorption. The brick scraps and the clay were characterized by FRX, DRX, TG, ATD and the granulometric analysis. Samples for testing where prepared by uniaxial pressing at 25Mpa, in 60x20x5mm size. The evaluated technological properties were: linear retraction, water absorption, apparent porosity and flexural strength. The samples were burned in electric oven in the temperatures of 850º, 950º and 1050ºC and compared its mechanical properties and the gresification. With addition of 15% by weight of brick scraps and burning at 900º-1000ºC the samples showed properties superior to that clay
Resumo:
The industries of structural ceramics are among the most important production chains in the state of Rio Grande do Norte. The industry and other interest groups to target the replacement of firewood by natural gas. Studies accordingly concluded that simple change does not guarantee products of superior quality, and that the increase in spending on fuel can economically cripple the use of gas for burning the majority of products manufactured by that action. However some proposals of innovations in terms of process and product are being studied in an attempt to justify the use of natural gas in industry, structural ceramics. One of the aspects investigated is the development of ceramic products differentiated, with new designs and greater value added. Inserted in that context, this paper aims to investigate the potential use of clay-firing clear fabrication of the "bricks of apparent joins drought", a new ceramic product with an innovative way. The development of the work was done in three stages. In the initial stage was held the characterization of raw materials, sought information on physical, chemical, mineralogical and mechanical samples. In the second stage five bodies were made using two of the nine ceramic clay characterized the first step. The masses were analyzed and compared with respect to the size distribution, plasticity and technological properties. In the last part of this work was carried out tests on massive bricks manufactured on an industrial scale. The results show that the nine clays can be used in the manufacture of new ceramic products, is the only constituent of mass ceramic or by mixing with other(s) clay(s
Resumo:
The obtaining of ceramic materials from polymeric precursors is subject of numerous studies due to lower energy costs compared to conventional processing. The aim of this study is to investigate and improve the mechanism for obtaining ceramic matrix composite (CMC) based on SiOC/Al2O3/TiC by pyrolysis of polysiloxane in the presence of an active filler and inert filler in the pyrolysis temperature lower than the usually adopted for this technique, with greater strength. It also investigates the influence of pyrolysis temperature, the content of Alas active filler, the presence of infiltrating agents (Al, glass and polymer) after pyrolysis, temperature and infiltration time on some physical and mechanical properties. Alumina is used as inert filler and Al and Ti as active filler in the pyrolysis. Aluminum, glass and polysiloxane are used as agents infiltrating the post-pyrolysis. The results are analyzed with respect to porosity and bulk density by the Archimedes method, the presence of crystalline phases by X-ray diffraction (XRD) and microstructure by scanning electron microscopy (SEM). The ceramic pyrolyzed between 850 °C 1400 °C contain porosity 15% to 33%, density 2.34 g/cm3 and flexural strength at 4 points from 30 to 42 MPa. The microstructure features are porous, with an array of Al2O3 reinforced by TiC particles and AlTi3. The infiltration post-pyrolysis reveals decrease in porosity and increase density and strength. The composites have potential applications where thermal stability is the main requirement
Resumo:
The limits to inform is about the character stico of basic, quimica, mineralogical and mechaniques of matlaughed material used in the manufacturing process the product certified in economic region the Cariri, specifically in the city of Crato, Ceará state, motivated the development of this work, since in this region the exist ing economic context that a general appear as important in the production chains. Were made twentyfive soils-test specimen collection and the study was performed to differentiate the mat laugh materials of variaveis processing of mathing raw materials in the factory The product mica monkeys by extrusion and pressing. The results were obtained ap s as analyzes: grain size, index of plasticity, fluoresce incidence X-ray difration the X-ray, and analyzes thermicals and properties technological. through s of curves gresifica returned to was a comparison between the retro the linear, absorb to water, porosity and bulk density. the results show that the excellent distribution and character acceptable available for the processing of the structure color dark red. needing, therefore, of the mixture of a less plastic clay with thick granulation, that works as plasticity reducer. In spite of the different resignation forms for prensagem and extrusion, the characteristics of absorption of water and rupture tension the flexing was shown inside of the patterns of ABNT
Resumo:
Considering the constant evolution of technology in growth and the need for production techniques in the ceramics area to move forward together, we sought in this study, the research and development of polymeric precursor method to obtain inorganic ceramic pigments. Method that provides quality to obtain the precursor powders of oxides and pigments at the same time, offers time and cost advantages, such as reproducibility, purity and low temperature heat treatment, control of stoichiometry. This work used chromium nitrate and iron nitrate as precursors. The synthesis is based on the dissolution of citric acid as a complexing agent, addition of metal oxides, such as ion chromophores; polymerization with ethylene glycol and doping with titanium oxide. Passing through precalcination, breakdown, thermal treatments at different temperatures of calcination (700 to 1100 oC), resulting in pigments: green for chromium oxide deposited on TiO2 (CrTiO3) and orange for iron oxide deposited on TiO2 ( FeTiO3). Noticing an increase of opacity with increasing temperature. Were performed thermal analysis (TG and ATD) in order to evaluate its thermodecomposition. The powders were also characterized by techniques such as XRD, revealing the formation of crystalline phases such as iron titanate (FeTiO3) and chrome titanate (CrTiO3), SEM, demonstrating formation of rounded particles for both oxides and Spectroscopy in the UV-Visible Region, verifying the potential variation and chromaticity os pigments. Thus, the synthesized oxides were within the requirements to be applied as pigments and shown to be possible to propose its use in ceramic materials
Resumo:
In this work, were produced ceramic matrix composites based in SiCxOy e Al2O3 reinforced with NbC, by hydrosilylation reaction between D4Vi and poly(methylhydrosiloxane) mixtured with Al2O3 as inert filler, Nb and Al as reactive filler. After the mixture and compactation at 80ºC (warm pressing), the samples were pyrolised at 1200 and 1400ºC and infiltred with ICZ and LZSA respectively, and thermically, physical and structurally characterized by X-ray diffraction, density and porosity, flexural mechanical strength and fracture surface by scanning electron microscopy. The yield ceramic obtained after pyrolysis for studied composition at 1200ºC was 95%. The obtained phases had been identified as being Al3Nb, NbSi2 and NbC. The composite material presented apparent porosity varying of 15 up to 32% and mechanical flexural strenght of 32 up to 37,5MPa. After the fracture surface analysis, were observed a phases homogeneous dispersion, with some domains of amorphous and crystalline aspect. The samples that were submitted the infiltration cycle presented a layer next the surface with reduced pores number in relation to the total volume
Resumo:
This work is part of an effort of consolidation of a daily search for powder technology at the Department of Physics of the Universidade Federal do Rio Grande do Norte. This work objective the study and development of new ceramic materials from raw materials abundant at the region. For this, were studied ceramic mixtures of powders from diatomite-titania to aiming at a new ceramic material from powder technology. The experimental work involved a characterization of ceramic powders from a diatomite-titania mixture. The powders obtained were pressed and then parameters like variation of mass, linear shrinkage, activation energy and the mechanism of sintering are studied in function of the time and temperature of sintering, beyond microstructural analysis. The obtained results allow us estimate the optimizing of sintering conditions of this material