966 resultados para central nervous system tumor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since arthritis induced by Mycobacterium products (adjuvant) in rats is considered to be immunologically driven, the objective of the present study was to determine if the immunosuppressor drug cyclosporin could affect hindpaw edema and joint hyperalgesia simultaneously. Female Holtzman rats (140-170 g) presented hyperalgesia and edema on the 8th and 12th day following adjuvant injection. Daily systemic (oral or intramuscular) administration of cyclosporin (0.5-5.0 mg kg-1 day-1) or dexamethasone (0.01-0.1 mg kg-1 day-1) for 15 days starting on day zero dose-dependently inhibited the hindpaw edema and hyperalgesia in arthritic rats. However, hyperalgesia but not edema could be detected two days after cyclosporin withdrawal. We concluded that a) the continuous presence of cyclosporin is essential to reduce the development of joint hyperalgesia and that b) different mechanisms underlie the appearance of hyperalgesia and edema in this model. The intracerebroventricular (icv) administration of 5-50-fold smaller doses of cyclosporin (1.5-150 µg/day) or dexamethasone (15 µg/day) also reduced the arthritic hindpaw edema and hyperalgesia. Peripheral blood from animals injected with effective systemic cyclosporin doses showed detectable levels of the drug, whereas peripheral blood from those injected with icv cyclosporin did not, as measured by specific RIA. Our results indicate that cyclosporin administered by the central route is as effective as by the systemic route to reduce joint hyperalgesia and hindpaw edema in arthritic rats. The antiarthritic effect induced by low doses of cyclosporin in the central nervous system (CNS) could be explored to avoid its often associated systemic side effects during chronic therapy. However, the mechanism(s) involved in the antiarthritic response to cyclosporin in the CNS remain to be elucidated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the possible interactions between the nociceptive system, the sympathetic system and the inflammatory process. Thus, the superior cervical ganglion of rats was submitted to chronic inflammation and Fos expression was used as a marker for neuronal activity throughout central neurons following painful peripheral stimulation. The painful stimulus consisted of subcutaneously injected formalin applied to the supra-ocular region. Fos-positive neurons were identified by conventional immunohistochemical techniques, and analyzed from the obex through the cervical levels of the spinal cord. In the caudal sub-nucleus of the spinal trigeminal nuclear complex, the number of Fos-positive neurons was much higher in rats with inflammation of the superior cervical ganglion than in control rats, either sham-operated or with saline applied to the ganglion. There was a highly significant difference in the density of Fos-positive neurons between the inflamed and control groups. No significant difference was found between control groups. These results suggest that the inflammation of the superior cervical ganglion generated an increased responsiveness to painful stimuli, which may have been due to a diminished sympathetic influence upon the sensory peripheral innervation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invertebrate glial cells show a variety of morphologies depending on species and location. They have been classified according to relatively general morphological or functional criteria and also to their location. The present study was carried out to characterize the organization of glial cells and their processes in the zona fasciculata and in the protocerebral tract of the crab Ucides cordatus. We performed routine and cytochemical procedures for electron microscopy analysis. Semithin sections were observed at the light microscope. The Thiéry procedure indicated the presence of carbohydrates, particularly glycogen, in tissue and in cells. To better visualize the axonal ensheathment at the ultrastructural level, we employed a method to enhance the unsaturated fatty acids present in membranes. Our results showed that there are at least two types of glial cells in these nervous structures, a light one and a dark one. Most of the dark cell processes have been mentioned in the literature as extracellular matrix, but since they presented an enveloping membrane, glycogen and mitochondria - intact and with different degrees of disruption - they were considered to be glial cells in the present study. We assume that they correspond to the perineurial cells on the basis of their location. The light cells must correspond to the periaxonal cells. Some characteristics of the axons such as their organization, ensheathment and subcellular structures are also described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibronectin (FN), a large family of plasma and extracellular matrix (ECM) glycoproteins, plays an important role in leukocyte migration. In normal central nervous system (CNS), a fine and delicate mesh of FN is virtually restricted to the basal membrane of cerebral blood vessels and to the glial limitans externa. Experimental autoimmune encephalomyelitis (EAE), an inflammatory CNS demyelinating disease, was induced in Lewis rats with a spinal cord homogenate. During the preclinical phase and the onset of the disease, marked immunolabelling was observed on the endothelial luminal surface and basal lamina of spinal cord and brainstem microvasculature. In the paralytic phase, a discrete labelling was evident in blood vessels of spinal cord and brainstem associated or not with an inflammatory infiltrate. Conversely, intense immunolabelling was present in cerebral and cerebellar blood vessels, which were still free from inflammatory cuffs. Shortly after clinical recovery minimal labelling was observed in a few blood vessels. Brainstem and spinal cord returned to normal, but numerous inflammatory foci and demyelination were still evident near the ventricle walls, in the cerebral cortex and in the cerebellum. Intense expression of FN in brain vessels ascending from the spinal cord towards the encephalon preceded the appearance of inflammatory cells but faded away after the establishment of the inflammatory cuff. These results indicate an important role for FN in the pathogenesis of CNS inflammatory demyelinating events occurring during EAE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alterations in extracellular matrix (ECM) expression in the central nervous system (CNS) usually associated with inflammatory lesions have been described in several pathological situations including neuroblastoma and demyelinating diseases. The participation of fibronectin (FN) and its receptor, the VLA-4 molecule, in the migration of inflammatory cells into the CNS has been proposed. In Trypanosoma cruzi infection encephalitis occurs during the acute phase, whereas in Toxoplasma infection encephalitis is a chronic persisting process. In immunocompromised individuals such as AIDS patients, T. cruzi or T. gondii infection can lead to severe CNS damage. At the moment, there are no data available regarding the molecules involved in the entrance of inflammatory cells into the CNS during parasitic encephalitis. Herein, we characterized the expression of the ECM components FN and laminin (LN) and their receptors in the CNS of T. gondii- and T. cruzi-infected mice. An increased expression of FN and LN was detected in the meninges, leptomeninges, choroid plexus and basal lamina of blood vessels. A fine FN network was observed involving T. gondii-free and T. gondii-containing inflammatory infiltrates. Moreover, perivascular spaces presenting a FN-containing filamentous network filled with a4+ and a5+ cells were observed. Although an increased expression of LN was detected in the basal lamina of blood vessels, the CNS inflammatory cells were a6-negative. Taken together, our results suggest that FN and its receptors VLA-4 and VLA-5 might be involved in the entrance, migration and retention of inflammatory cells into the CNS during parasitic infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axon growth and guidance represent complex biological processes in which probably intervene diverse sets of molecular cues that allow for the appropriate wiring of the central nervous system (CNS). The extracellular matrix (ECM) represents a major contributor of molecular signals either diffusible or membrane-bound that may regulate different stages of neural development. Some of the brain ECM molecules form tridimensional structures (tunnels and boundaries) that appear during time- and space-regulated events, possibly playing relevant roles in the control of axon elongation and pathfinding. This short review focuses mainly on the recognized roles played by proteoglycans, laminin, fibronectin and tenascin in axonal development during ontogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytokines are molecules that were initially discovered in the immune system as mediators of communication between various types of immune cells. However, it soon became evident that cytokines exert profound effects on key functions of the central nervous system, such as food intake, fever, neuroendocrine regulation, long-term potentiation, and behavior. In the 80's and 90's our group and others discovered that the genes encoding various cytokines and their receptors are expressed in vascular, glial, and neuronal structures of the adult brain. Most cytokines act through cell surface receptors that have one transmembrane domain and which transduce a signal through the JAK/STAT pathway. Of particular physiological and pathophysiological relevance is the fact that cytokines are potent regulators of hypothalamic neuropeptidergic systems that maintain neuroendocrine homeostasis and which regulate the body's response to stress. The mechanisms by which cytokine signaling affects the function of stress-related neuroendocrine systems are reviewed in this article.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to identify the single photon emission computed tomography (SPECT) and magnetic resonance (MR) findings in juvenile systemic lupus erythematosus (JSLE) patients with CNS involvement and to try to correlate them with neurological clinical history data and neurological clinical examination. Nineteen patients with JSLE (16 girls and 3 boys, mean age at onset 9.2 years) were submitted to neurological examination, electroencephalography, cerebrospinal fluid analysis, SPECT and MR. All the evaluations were made separately within a period of 15 days. SPECT and MR findings were analyzed independently by two radiologists. Electroencephalography and cerebrospinal fluid analysis revealed no relevant alterations. Ten of 19 patients (53%) presented neurological abnormalities including present or past neurological clinical history (8/19, 42%), abnormal neurological clinical examination (5/19, 26%), and abnormal SPECT or MR (8/19, 42% and 3/19, 16%, respectively). The most common changes in SPECT were cerebral hypoperfusion and heterogeneous distribution of blood flow. The most common abnormalities in MR were leukomalacia and diffuse alterations of white matter. There was a correlation between SPECT and MR (P<0.05). We conclude that SPECT and MR are complementary and useful exams in the evaluation of neurological involvement of lupus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

JNK1 is a MAP-kinase that has proven a significant player in the central nervous system. It regulates brain development and the maintenance of dendrites and axons. Several novel phosphorylation targets of JNK1 were identified in a screen performed in the Coffey lab. These proteins were mainly involved in the regulation of neuronal cytoskeleton, influencing the dynamics and stability of microtubules and actin. These structural proteins form the dynamic backbone for the elaborate architecture of the dendritic tree of a neuron. The initiation and branching of the dendrites requires a dynamic interplay between the cytoskeletal building blocks. Both microtubules and actin are decorated by associated proteins which regulate their dynamics. The dendrite-specific, high molecular weight microtubule associated protein 2 (MAP2) is an abundant protein in the brain, the binding of which stabilizes microtubules and influences their bundling. Its expression in non-neuronal cells induces the formation of neurite-like processes from the cell body, and its function is highly regulated by phosphorylation. JNK1 was shown to phosphorylate the proline-rich domain of MAP2 in vivo in a previous study performed in the group. Here we verify three threonine residues (T1619, T1622 and T1625) as JNK1 targets, the phosphorylation of which increases the binding of MAP2 to microtubules. This binding stabilizes the microtubules and increases process formation in non-neuronal cells. Phosphorylation-site mutants were engineered in the lab. The non-phosphorylatable mutant of MAP2 (MAP2- T1619A, T1622A, T1625A) in these residues fails to bind microtubules, while the pseudo-phosphorylated form, MAP2- T1619D, T1622D, Thr1625D, efficiently binds and induces process formation even without the presence of active JNK1. Ectopic expression of the MAP2- T1619D, T1622D, Thr1625D in vivo in mouse brain led to a striking increase in the branching of cortical layer 2/3 (L2/3) pyramidal neurons, compared to MAP2-WT. The dendritic complexity defines the receptive field of a neuron and dictates the output to the postsynaptic cells. Previous studies in the group indicated altered dendrite architecture of the pyramidal neurons in the Jnk1-/- mouse motor cortex. Here, we used Lucifer Yellow loading and Sholl analysis of neurons in order to study the dendritic branching in more detail. We report a striking, opposing effect in the absence of Jnk1 in the cortical layers 2/3 and 5 of the primary motor cortex. The basal dendrites of pyramidal neurons close to the pial surface at L2/3 show a reduced complexity. In contrast, the L5 neurons, which receive massive input from the L2/3 neurons, show greatly increased branching. Another novel substrate identified for JNK1 was MARCKSL1, a protein that regulates actin dynamics. It is highly expressed in neurons, but also in various cancer tissues. Three phosphorylation target residues for JNK1 were identified, and it was demonstrated that their phosphorylation reduces actin turnover and retards migration of these cells. Actin is the main cytoskeletal component in dendritic spines, the site of most excitatory synapses in pyramidal neurons. The density and gross morphology of the Lucifer Yellow filled dendrites were characterized and we show reduced density and altered morphology of spines in the motor cortex and in the hippocampal area CA3. The dynamic dendritic spines are widely considered to function as the cellular correlate during learning. We used a Morris water maze to test spatial memory. Here, the wild-type mice outperformed the knock-out mice during the acquisition phase of the experiment indicating impaired special memory. The L5 pyramidal neurons of the motor cortex project to the spinal cord and regulate the movement of distinct muscle groups. Thus the altered dendrite morphology in the motor cortex was expected to have an effect on the input-output balance in the signaling from the cortex to the lower motor circuits. A battery of behavioral tests were conducted for the wild-type and Jnk1-/- mice, and the knock-outs performed poorly compared to wild-type mice in tests assessing balance and fine motor movements. This study expands our knowledge of JNK1 as an important regulator of the dendritic fields of neurons and their manifestations in behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vascularization of the central nervous system of the snail Megalobulimus oblongus was studied by injection of carmine-gelatin solution into the arterial system and using a histochemical technique for the detection of alkaline phosphatase. The central nervous system of M. oblongus is irrigated by the anterior aorta, from which a series of small branches emerge that supply the subesophageal nervous ganglia. In turn, these branches give rise to a series of smaller vessels that irrigate the buccal bulb, the anterior portion of the foot, the cerebral ganglia, the dorsal body gland, and the anterior portion of the reproductive system. No hemolymph vessels were detected within nervous tissue although such vessels were found in the periganglionic connective sheath. This connective sheath contains vascular loops and had a series of overlaps and projections that follow the contour of the nervous ganglia. This arrangement permits a larger area of interaction between the surface of the nervous tissue and the hemolymph and reduces the distance between the deepest portion of a given ganglion and the hemolymph vessels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dipyrone administered intravenously (iv) delays gastric emptying (GE) in rats. The objectives of the present study were to assess: 1) the effect of the dose of dipyrone and time after its iv administration on GE in rats, 2) the effect of subdiaphragmatic vagotomy (VgX) and bilateral electrolytic lesion of the paraventricular nucleus (PVNX) on the delayed GE induced by the drug, and 3) the intracerebroventricular (icv) action of dipyrone and of one of its metabolites, 4-aminoantipyrine on GE. Male Wistar rats received saline labeled with phenol red intragastrically as a test meal. GE was indirectly assessed by the determination of percent gastric retention (GR) of the test meal 10 min after administration by gavage. Dipyrone delays GE in a dose- and time-dependent manner. Thirty minutes after the iv administration of 80 mg/kg dipyrone, the animals showed significantly higher GR (mean = 62.6%) compared to those receiving vehicle (31.5%). VgX and PVNX significantly reduced the iv effect of 80 mg/kg dipyrone (mean %GR: VgX = 28.3 vs Sham = 55.5 and PVNX = 34.5 vs Sham = 52.2). Icv administration of 4 µmol dipyrone caused a significant increase in GR (54.1%) of the test meal 10 min later, whereas administration of 4 µmol 4-aminoantipyrine had no effect (34.4%). Although the dipyrone dose administered icv was 16 times lower than that applied iv, for the same time of action (10 min), the GR of animals that received the drug icv (54.1%) or iv (54.5%) did not differ significantly. In conclusion, the present results suggest that the effect of dipyrone in delaying GE is due to the action of the drug on the central nervous system, with the participation of the PVN and of the vagus nerve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caffeine is the most consumed psychoactive substance in the world. The effects of caffeine have been studied using cognitive and motor measures, quantitative electroencephalography (qEEG) and event-related potentials. However, these methods are not usually employed in combination, a fact that impairs the interpretation of the results. The objective of the present study was to analyze changes in electrophysiological, cognitive and motor variables with the ingestion of caffeine, and to relate central to peripheral responses. For this purpose we recorded event-related potentials and eyes-closed, resting EEG, applied the Stroop test, and measured reaction time. Fifteen volunteers took caffeine (400 mg) or placebo in a randomized, crossover, double-blind design. A significant reduction of alpha absolute power over the entire scalp and of P300 latency at the Fz electrode were observed after caffeine ingestion. These results are consistent with a stimulatory effect of caffeine, although there was no change in the attention (Stroop) test or in reaction time. The qEEG seems to be the most sensitive index of the changes produced by caffeine in the central nervous system since it proved to be capable of detecting changes that were not evident in the tests of cognitive or motor performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparum infection. This condition has been associated with cognitive, behavioral and motor dysfunctions, seizures and coma. The underlying mechanisms of CM are incompletely understood. Glutamate and other metabolites such as lactate have been implicated in its pathogenesis. In the present study, we investigated the involvement of glutamate in the behavioral symptoms of CM. Seventeen female C57BL/6 mice (20-25 g) aged 6-8 weeks were infected with P. berghei ANKA by the intraperitoneal route using a standardized inoculation of 10(6) parasitized red blood cells suspended in 0.2 mL PBS. Control animals (N = 17) received the same volume of PBS. Behavioral and neurological symptoms were analyzed by the SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment (SHIRPA) battery. Glutamate release was measured in the cerebral cortex and cerebrospinal fluid of infected and control mice by fluorimetric assay. All functional categories of the SHIRPA battery were significantly altered in the infected mice at 6 days post-infection (dpi) (P ≤ 0.05). In parallel to CM symptoms, we found a significant increase in glutamate levels in the cerebral cortex (mean ± SEM; control: 11.62 ± 0.90 nmol/mg protein; infected at 3 dpi: 10.36 ± 1.17 nmol/mg protein; infected at 6 dpi: 26.65 ± 0.73 nmol/mg protein; with EGTA, control: 5.60 ± 1.92 nmol/mg protein; infected at 3 dpi: 6.24 ± 1.87 nmol/mg protein; infected at 6 dpi: 14.14 ± 0.84 nmol/mg protein) and in the cerebrospinal fluid (control: 128 ± 51.23 pmol/mg protein; infected: 301.4 ± 22.52 pmol/mg protein) of infected mice (P ≤ 0.05). These findings suggest a role of glutamate in the central nervous system dysfunction found in CM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Bovine Spongiform Encephalopathy (BSE) is a virulent disease which may infect by affecting the central nervous system (CNS) tissues in cattle and causes degeneration in nerves. Central nervous system tissues such as brain and spinal cord which are classified as specified risk materials (SRMs) are regarded to be main source of infection. The contamination of the meat with the specific risk materials (SRMs) can occur in phases of slaughter, fragmentation of carcass and processing. This study was conducted in order to investigate the existence of CNS tissues in raw meat ball (cig kofte) which is commonly consumed in the Southeastern Region of Turkey, particularly in Şanlıurfa. For this purpose, 145 samples of raw meat ball were tested. The enzyme-linked immunosorbent assay (ELISA) kits (Ridascreen risk material 10/5, R-biofarm GmbH) which determine glial fibrillary acidic protein (GFAP) as determinant were used. As a result of the analyses, positivity was detected in 21 of totally 145 samples of raw meat ball (14.48%). 6 (4.14%) of the samples gave low level of positivity (≥ 0.1 standard absorbance), 10 (6.90%) gave medium level of positivity (>0.2 standard absorbance) and 5 (3.45%) gave high level of positivity (≥0.5 standard absorbance). As a consequence, meats are contaminated in any phase of both slaughter and meat production even if accidentally. Regarding this matter, necessary measures should be taken and hygiene rules should be applied.