964 resultados para cell strain MC 3T3 E1
Resumo:
Mast Cells (MCs) express toll-like receptor 2 (TLR2), a receptor known to be triggered by several major mycobacterial ligands and involved in resistance against Mycobacterium tuberculosis (MTB) infection. This study investigated whether adoptive transfer of TLR2 positive MCs (TLR2(+/+)) corrects the increased susceptibility of TLR2(-/-) mice to MTB infection. TLR2(-/-) mice displayed increased mycobacterial burden, diminished myeloid cell recruitment and proinflammatory cytokine production accompanied by defective granuloma formation. The reconstitution of these mice with TLR2(+/+) MCs, but not TLR2(-/-), confers better control of the infection, promotes the normalization of myeloid cell recruitment associated with reestablishment of the granuloma formation. In addition, adoptive transfer of TLR2(+/+) MC to TLR2(-/-) mice resulted in regulation of the pulmonary levels of IL-beta, IL-6, TNF-alpha, enhanced Th1 response and activated CD8(+) T cell homing to the lungs. Our results suggest that activation of MCs via TLR2 is required to compensate the defect in protective immunity and inability of TLR2(-/-) mice to control MTB infection. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Environmental issues due to increases in emissions of air pollutants and greenhouse gases are driving the development of clean energy delivery technologies such as fuel cells. Low temperature Proton Exchange Membrane Fuel Cells (PEMFC) use hydrogen as a fuel and their only emission is water. While significant advances have been made in recent years, a major limitation of the current technology is the cost and materials limitations of the proton conduction membrane. The proton exchange membrane performs three critical functions in the PEMFC membrane electrode assembly (MEA): (i) conduction of protons with minimal resistance from the anode (where they are generated from hydrogen) to the cathode (where they combine with oxygen and electrons, from the external circuit or load), (ii) providing electrical insulation between the anode and cathode to prevent shorting, and (iii) providing a gas impermeable barrier to prevent mixing of the fuel (hydrogen) and oxidant. The PFSA (perfluorosulphonic acid) family of membranes is currently the best developed proton conduction membrane commercially available, but these materials are limited to operation below 100oC (typically 80oC, or lower) due to the thermochemical limitations of this polymer. For both mobile and stationary applications, fuel cell companies require more durable, cost effective membrane technologies capable of delivering enhanced performance at higher temperatures (typically 120oC, or higher. This is driving research into a wide range of novel organic and inorganic materials with the potential to be good proton conductors and form coherent membranes. There are several research efforts recently reported in the literature employing inorganic nanomaterials. These include functionalised silica phosphates [1,2], fullerene [3] titania phosphates [4], zirconium pyrophosphate [5]. This work addresses the functionalisation of titania particles with phosphoric acid. Proton conductivity measurements are given together with structural properties.
Resumo:
A continuous cell line, Aa23, was established from eggs of a strain of the Asian tiger mosquito, Aedes albopictus, naturally infected with the intracellular symbiont Wolbachia pipientis. The resulting cell line was shown to be persistently infected with the bacterial endosymbiont. Treatment with antibiotics cured the cells of the infection. In the course of establishing this cell line it was noticed that RFLPs in the PCR products of two Wolbachia genes from the parental mosquitoes were fixed in the infected cell line. This indicates that the mosquito host was naturally superinfected with different Wolbachia strains, whereas the infected cell line derived from these mosquitoes only contained one of the original Wolbachia strains. The development of anin vitroculture system for this fastidious microorganism should facilitate molecular analysis of the reproduction distorting phenotypes it induces in natural arthropod hosts.
Resumo:
T cells recognize peptide epitopes bound to major histocompatibility complex molecules. Human T-cell epitopes have diagnostic and therapeutic applications in autoimmune diseases. However, their accurate definition within an autoantigen by T-cell bioassay, usually proliferation, involves many costly peptides and a large amount of blood, We have therefore developed a strategy to predict T-cell epitopes and applied it to tyrosine phosphatase IA-2, an autoantigen in IDDM, and HLA-DR4(*0401). First, the binding of synthetic overlapping peptides encompassing IA-2 was measured directly to purified DR4. Secondly, a large amount of HLA-DR4 binding data were analysed by alignment using a genetic algorithm and were used to train an artificial neural network to predict the affinity of binding. This bioinformatic prediction method was then validated experimentally and used to predict DR4 binding peptides in IA-2. The binding set encompassed 85% of experimentally determined T-cell epitopes. Both the experimental and bioinformatic methods had high negative predictive values, 92% and 95%, indicating that this strategy of combining experimental results with computer modelling should lead to a significant reduction in the amount of blood and the number of peptides required to define T-cell epitopes in humans.
Resumo:
Whole body glucose homeostasis is dependent on the action of insulin. In muscle and adipose tissues, insulin stimulates glucose uptake by inducing the translocation of vesicles containing the glucose transporter GLUT4 to the cell surface. While the mechanisms of insulin-regulated GLUT4 translocation are not fully understood, some signaling intermediates have been implicated in this process. Interestingly, som: of these intermediates, including IRS-1 and PI3K, have been localised to the same intracellular membrane fraction as the GLUT4 storage pool, designated here as the high-speed pellet (HSP) fraction. This raises the possibility that many of the downstream insulin signaling intermediates may be located within close proximity to intracellular GLUT4. The goal of this study was to test this hypothesis in 3T3-L1 adipocytes. A large proportion of adipocyte phosphoproteins co-fractionated in the HSP fraction. In an attempt to resolve insulin-regulatable phosphoproteins, we subjected P-32-labeled subcellular fractions to two-dimensional gel electrophoresis (2-DE). Insulin reproducibly stimulated the phosphorylation of 12 spots in the HSP fraction. Most of the HSP phosphoproteins were insoluble in the nonionic detergent Triton X-100, whereas integral membrane proteins such as GLUT4 and intracellular caveolin were soluble under the same conditions. These results suggest that insulin-regulatable phosphoproteins in adipocytes may be organized in microdomains within the cell and that this assembly may act as an efficient conductor of the signaling proteins to rapidly facilitate downstream biological responses. Further study is required to establish the molecular basis for these detergent-insoluble signaling complexes.
Resumo:
The tensions produced in the wall of a rigid, thin-walled, liquid-filled sphere as it moves with an axisymmetric straining flow are examined. This problem has not been previously addressed. A generalised correlation for the maximum wall tension, expressed in dimensionless form as a Weber number (We), is developed in terms of the acceleration number (Ac) and Reynolds number (Re) of the straining flow. At low Reynolds number We is dominated by viscous forces, while inertial forces due to internal pressure gradients caused by sphere acceleration dominate at higher Re. The generalised correlation has been used to examine the case of a typical yeast cell (a thin-walled, liquid-filled sphere) passing through a typical high-pressure homogeniser (a straining-flow device). At 56 MPa homogenising pressure, a 6 mu m yeast cell experiences tensions in the inertially dominated regime (Re = 100). The correlation gives We = 0.206, corresponding to a maximum wall tension of 8 Nm(-1). This is equivalent to an applied compressive force of 150 mu N and compares favourably with the force required to break yeast cells under compressive micromanipulation (40-90 mu N). Inertial forces may therefore be an important and previously unrecognised. mechanism of microbial cell disruption during high-pressure homogenisation. Further work is required to examine the likelihood of cell deformation in the high-strain-rate short-residence-time environment of the homogeniser, and the effect that such deformation may have on the contribution of inertial forces to disruption. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A dendritic cell (DC) imbalance with a marked deficiency in CD4(-)8(+) DC occurs in non-obese diabetic (NOD) mice, a model of human autoimmune diabetes mellitus. Using a NOD congenic mouse strain, we find that this CD4(-)8(+) DC deficiency is associated with a gene segment on chromosome 4, which also encompasses non-MHC diabetes susceptibility loci. Treatment of NOD mice with fms-like tyrosine kinase 3 ligand (FL) enhances the level of CD4(-)8(+) DC, temporarily reversing the DC subtype imbalance. At the same time, fms-like tryosine kinase 3 ligand treatment blocks early stages of the diabetogenic process and with appropriately timed administration can completely prevent diabetes development. This points to a possible clinical use of FL to prevent autoimmune disease.
Resumo:
Background: Myocardial infarction remains as a major cause of mortality worldwide and a high rate of survivors develop heart failure as a sequel, resulting in a high morbidity and elevated expenditures for health system resources. We have designed a multicenter trial to test for the efficacy of autologous bone marrow (ABM) mononuclear cell (MC) transplantation in this subgroup of patients. The main hypothesis to be tested is that treated patients will have a significantly higher ejection fraction (EF) improvement after 6 months than controls. Methods: A sample of 300 patients admitted with ST elevation acute myocardial infarction (STEMI) and left ventricle (LV) systolic dysfunction, and submitted to successful mechanical or chemical recanalization of the infarct-related coronary artery will be selected for inclusion and randomized to either treated or control group in a double blind manner. The former group will receive 100 x 106 MC suspended in saline with 5% autologous serum in the culprit vessel, while the latter will receive placebo (saline with 5% autologous serum). Implications: Many phase I/II clinical trials using cell therapy for STEMI have been reported, demonstrating that cell transplantation is safe and may lead to better preserved LV function. Patients with high risk to develop systolic dysfunction have the potential to benefit more. Larger randomized, double blind and controlled trials to test for the efficacy of cell therapies in patients with high risk for developing heart failure are required.
Resumo:
Background Metastatic renal cell carcinoma (mRCC) is one of the most treatment-resistant malignancies. Despite all new therapeutic advances, almost all patients develop resistance to treatment and cure is rarely seen. In the present study, we evaluated the antitumor effect of a bicistronic retrovirus vector encoding both endostatin (ES) and interleukin (IL)-2 using an orthotopic metastatic RCC mouse model. Methods Balb/C-bearing Renca cells were treated with NIH/3T3-LendIRES-IL-2-SN cells. In the survival studies, mice were monitored daily until they died. At the end of the in vivo experiment, serum levels of IL-2 and ES were measured, the lung was weighed, and the number of metastatic nodules, nodule area, tumor vessels and proliferation of tumor-infiltrating Renca cells were determined. Results Inoculation of NIH/3T3-LendIRES-IL-2-SN cells resulted in an increase in ES and IL-2 levels in the treated group (p < 0.05). There was a significant decrease in lung wet weight, lung nodule area and tumor vessels in the treated group compared to the control group (p < 0.001). The proliferation of Renca cells in the bicistronic-treated group was significantly reduced compared to the control group (p < 0.05). Kaplan-Meier survival curves showed that the probability of survival was significantly higher for mice submitted to bicistronic therapy (log-rank test, p = 0.0016). Bicistronic therapy caused an increase in the infiltration of CD4, CD4 interferon (IFN)gamma-producing, CD8, CD8 IFN gamma-producing and natural killer (CD49b) cells. Conclusions Retroviral bicistronic gene transfer led to the secretion of functional ES and IL-2 that was sufficiently active to: (i) inhibit tumor angiogenesis and tumor cell proliferation and (ii) increase the infiltration of immune cells (C) Copyright. 2011 John Wiley & Sons, Ltd.
Resumo:
We investigated whether the administration of IL-2 combined with endostatin gene therapy was able to produce additive or even synergistic immunomodulatory activity in a mouse model of metastatic renal carcinoma. Renca cells were injected into the tail vein of BALB/c mice. After 24 h, the animals were randomly divided into four groups (5 mice/group). One group of mice was the control, the second group received treatment with 100,000 UI of Recombinant IL-2 (Proleukin, Chiron) twice a day, 1 day per week during 2 weeks (IL-2), the third group received treatment with a subcutaneous inoculation of 3.6 x 10(6) endostatin-producing cells, and the fourth group received both therapies (IL-2 + ES). Mice were treated for 2 weeks. In the survival studies, 10 mice/group daily, mice were monitored daily until they died. The presence of metastases led to a twofold increase in endostatin levels. Subcutaneous inoculation of NIH/3T3-LendSN cells resulted in a 2.75 and 2.78-fold increase in endostatin levels in the ES and IL-2 + ES group, respectively. At the end of the study, there was a significant decrease in lung wet weight, lung nodules area, and microvascular area (MVA) in all treated groups compared with the control group (P < 0.001). The significant difference in lung wet weight and lung nodules area between groups IL-2 and IL-2 + ES revealed a synergistic antitumor effect of the combined treatment (P < 0.05). The IL-2 + ES therapy Kaplan-Meier survival curves showed that the probability of survival was significantly higher for mice treated with the combined therapy (log-rank test, P = 0.0028). Conjugated therapy caused an increase in the infiltration of CD4, CD8 and CD49b lymphocytes. An increase in the amount of CD8 cells (P < 0.01) was observed when animals received both ES and IL-2, suggesting an additive effect of ES over IL-2 treatment. A synergistic effect of ES on the infiltration of CD4 (P < 0.001) and CD49b cells (P < 0.01) was also observed over the effect of IL-2. Here, we show that ES led to an increase in CD4 T helper cells as well as cytotoxic lymphocytes, such as NK cells and CD8 cells, within tumors of IL-2 treated mice. This means that ES plays a role in supporting the actions of T cells.
Resumo:
Background: A significant proportion of patients with asthma have persistent symptoms despite treatment with inhaled glucocorticosteroids. Objective: We hypothesized that in these patients, the alveolar parenchyma is subjected to mast cell-associated alterations. Methods: Bronchial and transbronchial biopsies from healthy controls (n = 8), patients with allergic rhinitis (n = 8), and patients with atopic uncontrolled asthma (symptoms despite treatment with inhaled glucocorticosteroids; mean dose, 743 mu g/d; n = 14) were processed for immunohistochemical identification of mast cell subtypes and mast cell expression of Fc epsilon RI and surface-bound IgE. Results: Whereas no difference in density of total bronchial mast cells was observed between patients with asthma and healthy controls, the total alveolar mast cell density was increased in the patients with asthma (P < .01). Division into mast cell subtypes revealed that in bronchi of patients with asthma, tryptase positive mast cells (MC(T)) numbers decreased compared with controls (P <= .05), whereas tryptase and chymase positive mast cells (MC(TC)) increased (P <= .05). In the alveolar parenchyma from patients with asthma, an increased density was found for both MC(T) (P <= .05) and MC(TC) (P <= .05). The increased alveolar mast cell densities were paralleled by an increased mast cell expression of FceRI (P < .001) compared with the controls. The patients with asthma also had increased numbers (P < .001) and proportions (P < .001) of alveolar mast cells with surface-bound IgE. Similar increases in densities, FceRI expression, and surface-bound IgE were not seen in separate explorations of alveolar mast cells in patients with allergic rhinitis. Conclusion: Our data suggest that patients with atopic uncontrolled asthma have an increased parenchymal infiltration of MCT and MCTC populations with increased expression of FceRI and surface-bound IgE compared with atopic and nonatopic controls. (J Allergy Clin Immunol 2011;127:905-12.)
Resumo:
The study analyzed the effects of chronic alcohol ingestion on the ultrastructure of the lining epithelium of the hard palatine mucosa of rats UChA and UChB (lines with voluntary alcohol consumption) in order to contribute to the understanding of the consequences of alcohol abuse for the morphology of the digestive system. Thirty female adult animals aged 120 days were divided into three experimental groups. (1) Ten UChA rats (genetically low ethanol consumer) with voluntary intake of 10% v/v (5.45 g/kg/day) ethanol solution and water. (2) Ten UChB (genetically high ethanol consumer) rats with voluntary intake of 10% v/v (7.16 g/kg/day) ethanol solution and water. (3) Ten Wistar rats with voluntary ad libitum water intake (control group). Both groups received Nuvital pellets ad libitum. The IGFR-I expression was intense in both experimental groups. The epithelial cells of the alcoholic rats UChA and UChB showed many alterations such as the presence of lipid droplets, altered nuclei, nuclei in corneum layer and disrupted mitochondria. It was concluded that ethanol intake induces ultrastructural lesions in the hard palatine mucosa. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Cardiac mast cells (MC) are apposed to capillaries within the heart and release renin and proteases capable of metabolizing angiotensins (Ang). Therefore, we hypothesized that mast cell degranulation could alter the rat coronary vascular responsiveness to the arterial delivered Ang I and Ang II, taking into account carboxypeptidase and chymase-1 activities. Hearts from animals that were either pretreated or not with systemic injection of the secretagogue compound 48/80 were isolated and mounted on a Langendorff apparatus to investigate coronary reactivity. The proteolytic activity of the cardiac perfusate from isolated hearts, pretreated or not with the secretagogue, toward Ang I and tetradecapeptide renin substrate was analyzed by HPLC. Coronary vascular reactivity to peptides was not affected by compound 48/80 pretreatment, despite the extensive amount of cardiac MC degranulation. Cardiac MC activation did not modify the generation of both Ang II and Ang 5-10 from Ang I by cardiac perfusate, activities that could be ascribed to MC carboxypeptidase and chymase-1, respectively. An aliskiren-resistant Ang I-forming activity was increased in perfusates from secretagogue-treated hearts. Thus, cardiac MC proteases capable of metabolizing angiotensins do not affect rat coronary reactivity to arterial delivered Ang I and II. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to compare the concentration of mast cells (MCs) in the healing process of incisions. Thirty rats were submitted to six linear incisions each, performed in the dorsal skin by carbon dioxide (CO(2)) and diode lasers, electrocautery and conventional scalpel. The animals were euthanized at intervals of 0 h, 24 h, 48 h, 72 h, 7 days and 14 days after the incisions had been made. Histological sections were obtained and stained with toluidine blue for identification of MCs, which were manually counted by conventional microscopy in 20 microscopic fields in the border of the incision, near the granulation tissue, or in the area of new collagen formation, depending on intervals. The concentration of MCs was significantly higher in the wounds made by scalpel than in those made by other techniques at 48 h and 72 h. After 72 h the number of MCs was also significantly higher after electrocautery than after incisions made by 4 W CO(2) laser. On days 7 and 14, there was no significant difference in the MC count among the different types of incisions. In summary, the MC concentration varied after different surgical incisions at early phases of wound healing. At the end of the healing process, however, there were similar MC concentrations around the incisions, suggesting that, in standard incisions in the surgical techniques studied, the wound healing process ultimately occurred in a similar pattern.
Resumo:
Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.