101 resultados para carnitine
Resumo:
The metabolic disorders that predispose patients to NASH (non-alcoholic steatohepatitis) include insulin resistance and obesity. Repeated hypoxic events, such as occur in obstructive sleep apnoea syndrome, have been designated as a risk factor in the progression of liver disease in such patients, but the mechanism is unclear, in particular the role of hypoxia. Therefore we studied the influence of hypoxia on the development and progression of steatohepatitis in an experimental mouse model. Mice with a hepatocellular-specific deficiency in the Pten (phosphatase and tensin homologue deleted on chromosome 10) gene, a tumour suppressor, were exposed to a 10% O2 (hypoxic) or 21% O2 (control) atmosphere for 7 days. Haematocrit, AST (aspartate aminotransferase), glucose, triacylglycerols (triglycerides) and insulin tolerance were measured in blood. Histological lesions were quantified. Expression of genes involved in lipogenesis and mitochondrial beta-oxidation, as well as FOXO1 (forkhead box O1), hepcidin and CYP2E1 (cytochrome P450 2E1), were analysed by quantitative PCR. In the animals exposed to hypoxia, the haematocrit increased (60+/-3% compared with 50+/-2% in controls; P<0.01) and the ratio of liver weight/body weight increased (5.4+/-0.2% compared with 4.7+/-0.3% in the controls; P<0.01). Furthermore, in animals exposed to hypoxia, steatosis was more pronounced (P<0.01), and the NAS [NAFLD (non-alcoholic fatty liver disease) activity score] (8.3+/-2.4 compared with 2.3+/-10.7 in controls; P<0.01), serum AST, triacylglycerols and glucose were higher. Insulin sensitivity decreased in mice exposed to hypoxia relative to controls. The expression of the lipogenic genes SREBP-1c (sterol-regulatory-element-binding protein-1c), PPAR-gamma (peroxisome-proliferator-activated receptor-gamma), ACC1 (acetyl-CoA carboxylase 1) and ACC2 (acetyl-CoA carboxylase 2) increased significantly in mice exposed to hypoxia, whereas mitochondria beta-oxidation genes [PPAR-alpha (peroxisome-proliferator-activated receptor-alpha) and CPT-1 (carnitine palmitoyltransferase-1)] decreased significantly. In conclusion, the findings of the present study demonstrate that hypoxia alone aggravates and accelerates the progression of NASH by up-regulating the expression of lipogenic genes, by down-regulating genes involved in lipid metabolism and by decreasing insulin sensitivity.
Resumo:
Dairy cows with high and low plasma non-esterified fatty acid (NEFA) concentrations in early lactation were compared for plasma parameters and mRNA expression of genes in liver and subcutaneous adipose tissue. The study involved 16 multiparous dairy cows with a plasma NEFA concentration of >500 mumol/l [n = 8, high NEFA (HNEFA)] and <140 mumol/l [n = 8, low NEFA (LNEFA)] in the first week post-partum (pp). Blood samples, adipose and liver tissues were collected on day 1 (+1d) and at week 3 pp (+3wk). Blood plasma was assayed for concentrations of metabolites and hormones. Subcutaneous adipose and liver tissues were analysed for mRNA abundance by real-time qRT-PCR encoding parameters related to lipid metabolism. Results showed that mean daily milk yield and milk fat quantity were higher in HNEFA than in LNEFA cows (p < 0.01), and the NEB was more negative in HNEFA than in LNEFA in +3wk too (p < 0.05). HNEFA cows had slightly lower (p < 0.1) insulin concentrations than LNEFA cows across the study period, and the body condition score decreased more from +1d to +3wk in HNEFA than in LNEFA (p = 0.09). The mRNA abundance of genes in the liver related to fatty acid oxidation (carnitine palmitoyltransferase 2 and very long chain acyl-coenzyme A dehydrogenase) and ketogenesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2) were lower in HNEFA than in LNEFA cows. No differences between the two groups were observed for mRNA expression of genes in adipose tissue. The number of calculated significant correlation coefficients (moderately strong) between parameters in the liver and in adipose tissue was nearly similar on +1d, and higher for HNEFA compared with LNEFA cows in +3wk. In conclusion, dairy cows with high compared with low plasma NEFA concentrations in early lactation show differentially synchronized mRNA expression of genes in adipose tissue and liver in +3wk that suggests a different orchestrated homeorhetic regulation of lipid metabolism.
Resumo:
Vitamin C (ascorbic acid) is required for the synthesis of collagen, carnitine, catecholamine and the neurotransmitter norepinephrine. Vitamin C also plays an important role in protection against oxidative stress. Transporters for vitamin C and its oxidized form dehydroascorbate (DHA) are crucial to keep vitamin concentrations optimal in the body. The human SLC23 family consists of the Na(+)-dependent vitamin C transporters SVCT1 (SLC23A1) and SVCT2 (SLC23A2) and the orphan transporter SVCT3 (SLC23A3). Phylogenetically, the SLC23 family belongs to the nucleobase-ascorbate transporter family although no specificity for nucleobases has yet been demonstrated for the human members of this family. In fact, the SVCT1 and SVCT2 transporters are rather specific for ascorbic acid. SVCT1 is expressed in epithelial tissues such as intestine, where it contributes to the maintenance of whole-body ascorbic acid levels, whereas the expression of SVCT2 is relatively widespread either to protect metabolically active cells and specialized tissues from oxidative stress or to deliver ascorbic acid to tissues that are in high demand of the vitamin for enzymatic reactions. DHA, the oxidized form of ascorbic acid is taken up and distributed in the body by facilitated transport via members of the SLC2/GLUT family (GLUT1, GLUT3, and GLUT4). Although, the main focus of this review is on the SLC23 family of ascorbic acid transporters, transporters of DHA and nucleobases are also briefly discussed for completeness.
Resumo:
SCOPE: Xanthohumol (XN), a prenylated antioxidative and anti-inflammatory chalcone from hops, exhibits positive effects on lipid and glucose metabolism. Based on its favorable biological properties, we investigated whether XN attenuates atherosclerosis in western-type diet-fed apolipoprotein-E-deficient (ApoE(-/-) ) mice. METHODS AND RESULTS: XN supplementation markedly reduced plasma cholesterol concentrations, decreased atherosclerotic lesion area, and attenuated plasma concentrations of the proinflammatory cytokine monocyte chemoattractant protein 1. Decreased hepatic triglyceride and cholesterol content, activation of AMP-activated protein kinase, phosphorylation and inactivation of acetyl-CoA carboxylase, and reduced expression levels of mature sterol regulatory element-binding protein (SREBP)-2 and SREBP-1c mRNA indicate reduced lipogenesis in the liver of XN-fed ApoE(-/-) mice. Concomitant induction of hepatic mRNA expression of carnitine palmitoyltransferase-1a in ApoE(-/-) mice-administered XN suggests increased fatty acid beta-oxidation. Fecal cholesterol concentrations were also markedly increased in XN-fed ApoE(-/-) mice compared with mice fed western-type diet alone. CONCLUSION: The atheroprotective effects of XN might be attributed to combined beneficial effects on plasma cholesterol and monocyte chemoattractant protein 1 concentrations and hepatic lipid metabolism via activation of AMP-activated protein kinase.
Resumo:
The purpose of this study was to investigate variations in hepatic regulation of metabolism during the dry period, after parturition, and in early lactation in dairy cows. For this evaluation, cows were divided into 2 groups based on the plasma concentration of beta-hydroxybutyric acid (BHBA) in wk 4 postpartum (PP; group HB, BHBA >0.75 mmol/L; group LB, BHBA <0.75 mmol/L, respectively). Liver biopsies were obtained from 28 cows at drying off (mean 59 +/- 8 d antepartum), on d 1, and in wk 4 and 14 PP. Blood samples were collected every 2 wk during this entire period. Liver samples were analyzed for mRNA abundance of genes related to carbohydrate metabolism (pyruvate carboxylase, PC; phosphoenolpyruvate carboxykinase, PEPCK; citrate synthase, CS), fatty acid biosynthesis (ATP citrate lyase, ACLY) and oxidation (acyl-CoA synthetase long-chain, ACSL; carnitine palmitoyltransferase 1A, CPT 1A; carnitine palmitoyltransferase 2, CPT 2; acyl-coenzyme A dehydrogenase very long chain, ACADVL), cholesterol biosynthesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 1, HMGCS1), ketogenesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2, HMGCS2), and of genes encoding the transcription factors peroxisome proliferator-activated receptor alpha (PPARalpha), peroxisome proliferator-activated receptor gamma (PPARgamma), and sterol regulatory element binding factor 1 (SREBF1). Blood plasma was assayed for concentrations of glucose, BHBA, nonesterified fatty acids, cholesterol, triglycerides, insulin, insulin-like growth factor-I, and thyroid hormones. In both groups, plasma parameters followed a pattern usually observed in dairy cows. However, changes were moderate and the energy balance in cows turned positive in wk 7 PP for both groups. Additionally, the energy balance and milk yield were similar for both groups after parturition onwards. Significant group effects were found at drying off, when plasma concentrations of triglycerides were higher in LB than in HB, and in wk 4 PP, when plasma concentrations of glucose and IGF-I were lower in HB than in LB. Similarly, moderate changes in mRNA expression of hepatic genes between the different time points were observed, although HB cows showed more adaptive performance than LB cows based on changes in mRNA expression of PEPCKc, PEPCKm, CS, CPT 1A, CPT 2, and PPARalpha. Part of the variation measured in this study was explained by parity. Significant Spearman rank correlation coefficients between the variables were not similar at each time point and were not similar between the groups at each time point, suggesting that metabolic regulation differs between cows. In conclusion, metabolic regulation in dairy cows is a dynamic system, and differs obviously between cows at different metabolic stages related to parturition.
Resumo:
Trans-10,cis-12 conjugated linoleic acid (CLA) supplementation causes milk fat depression in dairy cows, but CLA effects on glucose metabolism are not clear. The objective of the study was to investigate glucose metabolism, especially endogenous glucose production (eGP) and glucose oxidation (GOx), as well as hepatic genes involved in endogenous glucose production in Holstein cows supplemented either with 50 g of rumen-protected CLA (9% trans-10,cis-12 and 10% cis-9,trans-11; CLA; n=10) or 50 g of control fat (24% C18:2; Ctrl; n=10) from wk 2 before parturition to wk 9 of lactation. Animal performance data were recorded and blood metabolites and hormones were taken weekly from 2 wk before to 12 wk after parturition. During wk 3 and 9 after parturition, glucose tolerance tests were performed and eGP and GOx were measured by [U-(13)C] glucose infusion. Liver biopsies were taken at the same time to measure total fat and glycogen concentrations and gene expression of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and carnitine palmitoyl-transferase 1. Conjugated linoleic acid feeding reduced milk fat, but increased milk lactose output; milk yield was higher starting 5 wk after parturition in CLA-fed cows than in Ctrl-fed cows. Energy balance was more negative during CLA supplementation, and plasma concentrations of glucose were higher immediately after calving in CLA-fed cows. Conjugated linoleic acid supplementation did not affect insulin release during glucose tolerance tests, but reduced eGP in wk 3, and eGP and GOx increased with time after parturition. Hepatic gene expression of cytosolic phosphoenolpyruvate carboxykinase tended to be lower in CLA-fed cows than in Ctrl-fed cows. In spite of lower eGP in CLA-fed cows, lactose output and plasma glucose concentrations were greater in CLA-fed cows than in Ctrl-fed cows. This suggests a CLA-related glucose sparing effect most likely due to lower glucose utilization for milk fat synthesis and probably because of a more efficient whole-body energy utilization in CLA-fed cows.
Resumo:
Insufficient feed intake during early lactation results in elevated body fat mobilization to meet energy demands for milk production. Hepatic energy metabolism is involved by increasing endogenous glucose production and hepatic glucose output for milk synthesis and by adaptation of postcalving fuel oxidation. Given that cows differ in their degree of fat mobilization around parturition, indicated by variable total liver fat concentration (LFC), the study investigated the influence of peripartum fat mobilization on hepatic gene expression involved in gluconeogenesis, fatty acid oxidation, ketogenesis, and cholesterol synthesis, as well as transcriptional factors referring to energy metabolism. German Holstein cows were grouped according to mean total LFC on d 1, 14, and 28 after parturition as low [<200mg of total fat/g of dry matter (DM); n=10], medium (200-300 mg of total fat/g of DM; n=10), and high (>300 mg of total fat/g of DM; n=7), indicating fat mobilization during early lactation. Cows were fed total mixed rations ad libitum and held under equal conditions. Liver biopsies were taken at d 56 and 15 before and d 1, 14, 28, and 49 after parturition to measure mRNA abundances of pyruvate carboxylase (PC); phosphoenolpyruvate carboxykinase; glucose-6-phosphatase; propionyl-coenzyme A (CoA) carboxylase α; carnitine palmitoyl-transferase 1A (CPT1A); acyl-CoA synthetase, long chain 1 (ASCL1); acyl-CoA dehydrogenase, very long chain; 3-hydroxy-3-methylglutaryl-CoA synthase 1 and 2; sterol regulatory element-binding factor 1; and peroxisome proliferator-activated factor α. Total LFC postpartum differed greatly among cows, and the mRNA abundance of most enzymes and transcription factors changed with time during the experimental period. Abundance of PC mRNA increased at parturition to a greater extent in high- and medium-LFC groups than in the low-LFC group. Significant LFC × time interactions for ACSL1 and CPT1A during the experimental period indicated variable gene expression depending on LFC after parturition. Correlations between hepatic gene expression and performance data and plasma concentrations of metabolites and hormones showed time-specific relations during the transition period. Elevated body fat mobilization during early lactation affected gene expression involved in gluconeogenesis to a greater extent than gene expression involved in lipid metabolism, indicating the dependence of hepatic glucose metabolism on hepatic lipid status and fat mobilization during early lactation.
Resumo:
1. Cytochrome P450 2D6 (CYP2D6) is a pivotal enzyme responsible for a major drug oxidation polymorphism in human populations. Distribution of CYP2D6 in brain and its role in serotonin metabolism suggest that CYP2D6 may have a function in the central nervous system. 2. To establish an efficient and accurate platform for the study of CYP2D6 in vivo, a human CYP2D6 (Tg-2D6) model was generated by transgenesis in wild-type (WT) C57BL/6 mice using a P1 phage artificial chromosome clone containing the complete human CYP2D locus, including the CYP2D6 gene and 5'- and 3'-flanking sequences. 3. Human CYP2D6 was expressed not only in the liver but also in the brain. The abundance of serotonin and 5-hydroxyindoleacetic acid in brain of Tg-2D6 is higher than in WT mice, either basal levels or after harmaline induction. Metabolomics of brain homogenate and cerebrospinal fluid revealed a significant up-regulation of L-carnitine, acetyl-L-carnitine, pantothenic acid, 2'-deoxycytidine diphosphate (dCDP), anandamide, N-acetylglucosaminylamine and a down-regulation of stearoyl-L-carnitine in Tg-2D6 mice compared with WT mice. Anxiety tests indicate Tg-2D6 mice have a higher capability to adapt to anxiety. 4. Overall, these findings indicate that the Tg-2D6 mouse model may serve as a valuable in vivo tool to determine CYP2D6-involved neurophysiological metabolism and function.
Resumo:
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency- (MADD-), also called glutaric aciduria type 2, associated leukodystrophy may be severe and progressive despite conventional treatment with protein- and fat-restricted diet, carnitine, riboflavin, and coenzyme Q10. Administration of ketone bodies was described as a promising adjunct, but has only been documented once. METHODS We describe a Portuguese boy of consanguineous parents who developed progressive muscle weakness at 2.5 y of age, followed by severe metabolic decompensation with hypoglycaemia and coma triggered by a viral infection. Magnetic resonance (MR) imaging showed diffuse leukodystrophy. MADD was diagnosed by biochemical and molecular analyses. Clinical deterioration continued despite conventional treatment. Enteral sodium D,L-3-hydroxybutyrate (NaHB) was progressively introduced and maintained at 600 mg/kg BW/d (≈3% caloric need). Follow up was 3 y and included regular clinical examinations, biochemical studies, and imaging. RESULTS During follow up, the initial GMFC-MLD (motor function classification system, 0 = normal, 6 = maximum impairment) level of 5-6 gradually improved to 1 after 5 mo. Social functioning and quality of life recovered remarkably. We found considerable improvement of MR imaging and spectroscopy during follow up, with a certain lag behind clinical recovery. There was some persistent residual developmental delay. CONCLUSION NaHB is a highly effective and safe treatment that needs further controlled studies.
Resumo:
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is mainly an autosomal dominant disease characterized by fibrofatty infiltration of the right ventricle, leading to ventricular arrhythmias. Mutations in desmosomal proteins can be identified in about half of the patients. The pathogenic mechanisms leading to disease expression remain unclear. OBJECTIVE The purpose of this study was to investigate myocardial expression profiles of candidate molecules involved in the pathogenesis of ARVC/D. METHODS Myocardial messenger RNA (mRNA) expression of 62 junctional molecules, 5 cardiac ion channel molecules, 8 structural molecules, 4 apoptotic molecules, and 6 adipogenic molecules was studied. The averaged expression of candidate mRNAs was compared between ARVC/D samples (n = 10), nonfamilial dilated cardiomyopathy (DCM) samples (n = 10), and healthy control samples (n = 8). Immunohistochemistry and quantitative protein expression analysis were performed. Genetic analysis using next generation sequencing was performed in all patients with ARVC/D. RESULTS Following mRNA levels were significantly increased in patients with ARVC/D compared to those with DCM and healthy controls: phospholamban (P ≤ .001 vs DCM; P ≤ .001 vs controls), healthy tumor protein 53 apoptosis effector (P = .001 vs DCM; P ≤ .001 vs controls), and carnitine palmitoyltransferase 1β (P ≤ .001 vs DCM; P = 0.008 vs controls). Plakophillin-2 (PKP-2) mRNA was downregulated in patients with ARVC/D with PKP-2 mutations compared with patients with ARVC/D without PKP-2 mutations (P = .04). Immunohistochemistry revealed significantly increased protein expression of phospholamban, tumor protein 53 apoptosis effector, and carnitine palmitoyltransferase 1β in patients with ARVC/D and decreased PKP-2 expression in patients with ARVC/D carrying a PKP-2 mutation. CONCLUSION Changes in the expression profiles of sarcolemmal calcium channel regulation, apoptosis, and adipogenesis suggest that these molecular pathways may play a critical role in the pathogenesis of ARVC/D, independent of the underlying genetic mutations.
Resumo:
To answer the question whether increased energy demand resulting from myocyte hypertrophy and enhanced $\beta$-myosin heavy chain mRNA, contractile protein synthesis and assembly leads to mitochondrial proliferation and differentiation, we set up an electrical stimulation model of cultured neonatal rat cardiac myocytes. We describe, as a result of increased contractile activity, increased mitochondrial profiles, cytochrome oxidase mRNA, and activity, as well as a switch in mitochondrial carnitine palmitoyltransferase-I (CPT-I) from the liver to muscle isoform. We investigate physiological pathways that lead to accumulation of gene transcripts for nuclear encoded mitochondrial proteins in the heart. Cardiomyocytes were stimulated for varying times up to 72 hr in serum-free culture. The mRNA contents for genes associated with transcriptional activation (c-fos, c-jun, junB, nuclear respiratory factor 1 (Nrf-1)), mitochondrial proliferation (cytochrome c (Cyt c), cytochrome oxidase), and mitochondrial differentiation (carnitine palmitonyltransferase I (CPT-I) isoforms) were measured. The results establish a temporal pattern of mRNA induction beginning with c-fos (0.25-3 hr) and followed by c-jun (0.5-3 hr), junB (0.5-6 hr), NRF-1 (1-12 hr), Cyt c (12-72 hr), cytochrome c oxidase (12-72 hr). Induction of the latter was accompanied by a marked decrease in the liver-specific CPT-I mRNA. Electrical stimulation increased c-fos, $\beta$-myosin heavy chain, and Cyt c promoter activities. These increases coincided with a rise in their respective endogenous gene transcripts. NRF-1, cAMP response element (CRE), and Sp-1 site mutations within the Cyt c promoter reduced luciferase expression in both stimulated and nonstimulated myocytes. Mutations in the Nrf-1 and CRE sites inhibited the induction by electrical stimulation or by transfection of c-jun into non-paced cardiac myocytes whereas mutation of the Sp-1 site maintained or increased the fold induction. This is consistent with the appearance of NRF-1 and fos/jun mRNAs prior to that of Cyt c. Overexpression of c-jun by transfection also activates the Nrf-1 and Cyt c mRNA sequentially. Electrical stimulation of cardiac myocytes activates the c-Jun-N-terminal kinase so that the fold-activation of the cyt c promoter is increased by pacing when either c-jun or c-fos/c-jun are cotransfected. We have identified physical association of Nrf-1 protein with the Nrf-1 enhancer element and of c-Jun with the CRE binding sites on the Cyt c promoter. This is the first demonstration that induction of Nrf-1 and c-Jun by pacing of cardiac myocytes directly mediates Cyt c gene expression and mitochondrial proliferation in response to hypertrophic stimuli in the heart.^ Subsequent to gene activation pathways that lead to mitochondrial proliferation, we observed an isoform switch in CPT-I from the liver to muscle mRNA. We have found that the half-life for the muscle CPT-I is not affected by electrical stimulation, but electrical decrease the T1/2 in the liver CPT-I by greater than 50%. This suggests that the liver CPT-I switch to muscle isoform is due to (1) a decrease in T1/2 of liver CPT-I and (2) activation of muscle CPT-Itranscripts by electrical stimulation. (Abstract shortened by UMI.) ^
Resumo:
Cardiovascular disease (CVD) is the leading cause of death in the United States. One manifestation of CVD known to increase mortality is an enlarged, or hypertrophic heart. Hypertrophic cardiomyocytes adapt to increased contractile demand at the genetic level with a re-emergence of the fetal gene program and a downregulation of fatty acid oxidation genes with concomitant increased reliance on glucose-based metabolism. To understand the transcriptional regulatory pathways that implement hypertrophic directives we analyzed the upstream promoter region of the muscle specific isoform of the nuclear-encoded mitochondrial gene, carnitine palmitoyltransferase-1β (CPT-1β) in cultured rat neonatal cardiac myocytes. This enzyme catalyzes the rate-limiting step of fatty acid entry into β-oxidation and is downregulated in cardiac hypertrophy and failure, making it an attractive model for the study of hypertrophic gene regulation and metabolic adaptations. We demonstrate that the muscle-enriched transcription factors GATA-4 and SRF synergistically activate CPT-1β; moreover, DNA binding to cognate sites and intact protein structure are required. This mechanism coordinates upregulation of energy generating processes with activation of the energy consuming contractile promoter for cardiac α-actin. We hypothesized that fatty acid or glucose responsive transcription factors may also regulate CPT-1β. Oleate weakly stimulates CPT-1β activity; in contrast, the glucose responsive Upstream Stimulatory Factors (USF) dramatically depresses the CPT-1β reporter. USF regulates CPT-1β through a novel physical interaction with the cofactor PGC-1 and abrogation of MEF2A/PGC-1 synergistic stimulation. In this way, USF can inversely regulate metabolic gene programs and may play a role in the shift of metabolic substrate preference seen in hypertrophy. Failing hearts have elevated expression of the nuclear hormone receptor COUP-TF. We report that COUP-TF significantly suppresses reporter transcription independent of DNA binding and specific interactions with GATA-4, Nkx2.5 or USF. In summary, CPT-1β transcriptional regulation integrates mitochondrial gene expression with two essential cardiac functions: contraction and metabolic substrate oxidation. ^
Resumo:
It is widely assumed that the ability of an introduced species to acclimate to local environmental conditions determines its invasion success. The sea anemone Diadumene lineata is a cosmopolitan invader and shows extreme physiological tolerances. It was recently discovered in Kiel Fjord (Western Baltic Sea), although the brackish conditions in this area are physiologically challenging for most marine organisms. This study investigated salinity tolerance in D. lineata specimens from Kiel Fjord in order to assess potential geographical range expansion of the species in the Baltic Sea. In laboratory growth assays, we quantified biomass change and asexual reproduction rates under various salinity regimes (34: North Sea, 24: Kattegat, 14: Kiel Fjord, 7: Baltic Proper). Furthermore, we used 1H-NMR-based metabolomics to analyse intracellular osmolyte dynamics. Within 4 weeks D. lineata exhibited a 5-fold population growth through asexual reproduction at high salinities (34 and 24). Biomass increase under these conditions was significantly higher (69%) than at a salinity of 14. At a salinity of 7, anemones ceased to reproduce asexually, their biomass decreased and metabolic depression was observed. Five main intracellular osmolytes were identified to be regulated in response to salinity change, with osmolyte depletion at a salinity of 7. We postulate that depletion of intracellular osmolytes defines a critical salinity (Scrit) that determines loss of fitness. Our results indicate that D. lineata has the potential to invade the Kattegat and Skagerrak regions with salinity >10. However, salinities of the Baltic Proper (salinity <8) currently seem to constitute a physiological limit for the species.
Resumo:
Electrical stimulation of neonatal cardiac myocytes produces hypertrophy and cellular maturation with increased mitochondrial content and activity. To investigate the patterns of gene expression associated with these processes, cardiac myocytes were stimulated for varying times up to 72 hr in serum-free culture. The mRNA contents for genes associated with transcriptional activation [c-fos, c-jun, JunB, nuclear respiratory factor 1 (NRF-1)], mitochondrial proliferation [cytochrome c (Cyt c), cytochrome oxidase], and mitochondrial differentiation [carnitine palmitoyltransferase I (CPT-I) isoforms] were measured. The results establish a temporal pattern of mRNA induction beginning with c-fos (0.25–3 hr) and followed sequentially by c-jun (0.5–3 hr), JunB (0.5–6 hr), NRF-1 (1–12 hr), Cyt c (12–72 hr), and muscle-specific CPT-I (48–72 hr). Induction of the latter was accompanied by a marked decrease in the liver-specific CPT-I mRNA, thus supporting the developmental fidelity of this pattern of gene regulation. Consistent with a transcriptional mechanism, electrical stimulation increased c-fos, β-myosin heavy chain, and Cyt c promoter activities. These increases coincided with a rise in their respective endogenous gene transcripts. NRF-1, cAMP response element, and Sp-1 site mutations within the Cyt c promoter reduced luciferase expression in both stimulated and nonstimulated myocytes. Mutations in the NRF-1 and CRE sites inhibited the induction by electrical stimulation (5-fold and 2-fold, respectively) whereas mutation of the Sp-1 site maintained or increased the fold induction. This finding is consistent with the appearance of NRF-1 and fos/jun mRNAs prior to that of Cyt c and suggests that induction of these transcription factors is a prerequisite for the transcriptional activation of Cyt c expression. These results support a regulatory role for NRF-1 and possibly AP-1 in the initiation of mitochondrial proliferation.
Resumo:
Animals, including humans, express two isoforms of acetyl-CoA carboxylase (EC 6.4.1.2), ACC1 (Mr = 265 kDa) and ACC2 (Mr = 280 kDa). The predicted amino acid sequence of ACC2 contains an additional 136 aa relative to ACC1, 114 of which constitute the unique N-terminal sequence of ACC2. The hydropathic profiles of the two ACC isoforms generally are comparable, except for the unique N-terminal sequence in ACC2. The sequence of amino acid residues 1–20 of ACC2 is highly hydrophobic, suggesting that it is a leader sequence that targets ACC2 for insertion into membranes. The subcellular localization of ACC2 in mammalian cells was determined by performing immunofluorescence microscopic analysis using affinity-purified anti-ACC2-specific antibodies and transient expression of the green fluorescent protein fused to the C terminus of the N-terminal sequences of ACC1 and ACC2. These analyses demonstrated that ACC1 is a cytosolic protein and that ACC2 was associated with the mitochondria, a finding that was confirmed further by the immunocolocalization of a known human mitochondria-specific protein and the carnitine palmitoyltransferase 1. Based on analyses of the fusion proteins of ACC–green fluorescent protein, we concluded that the N-terminal sequences of ACC2 are responsible for mitochondrial targeting of ACC2. The association of ACC2 with the mitochondria is consistent with the hypothesis that ACC2 is involved in the regulation of mitochondrial fatty acid oxidation through the inhibition of carnitine palmitoyltransferase 1 by its product malonyl-CoA.