955 resultados para capillary flows, contact lines, thin films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium Diboride (TiB2) presents high mechanical and physical properties. Some wear studies were also carried out in order to evaluate its tribological properties. One of the most popular wear tests for thin films is the ball-cratering configuration. This work was focused on the study of the tribological properties of TiB2 thin films using micro-abrasion tests and following the BS EN 1071-6: 2007 standard. Due to high hardness usually patented by these films, diamond was selected as abrasive on micro-abrasion tests. Micro-abrasion wear tests were performed under five different durations, using the same normal load, speed rotation and ball. Films were deposited by unbalanced magnetron sputtering Physical Vapour Deposition (PVD) technique using TiB2 targets. TiB2 films were characterized using different methods as Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), Electron Probe Micro-Analyser (EPMA), Ultra Micro Hardness and Scratch-test Analysis, allowing to confirm that TiB2 presents adequate mechanical and physical properties. Ratio between hardness (coating and abrasive particles), wear resistance and wear coefficient were studied, showing that TiB2 films shows excellent properties for tribological applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An integration of undoped InOx and commercial ITO thin films into laboratory assembled light shutter devices is made. Accordingly, undoped transparent conductive InOx thin films, about 100 nm thick, are deposited by radiofrequency plasma enhanced reactive thermal evaporation (rf-PERTE) of indium teardrops with no intentional heating of the glass substrates. The process of deposition occurs at very low deposition rates (0.1-0.3 nm/s) to establish an optimized reaction between the oxygen plasma and the metal vapor. These films show the following main characteristics: transparency of 87% (wavelength, lambda = 632.8 nm) and sheet resistance of 52 Omega/sq; while on commercial ITO films the transparency was of 92% and sheet resistance of 83 Omega/sq. The InOx thin film surface characterized by AFM shows a uniform grain texture with a root mean square surface roughness of Rq similar to 2.276 nm. In contrast, commercial ITO topography is characterized by two regions: one smoother with Rq similar to 0.973 nm and one with big grains (Rq similar to 3.617 nm). For the shutters assembled using commercial ITO, the light transmission coefficient (Tr) reaches the highest value (Tr-max) of 89% and the lowest (Tr-min) of 1.3% [13], while for the InOx shutters these values are 80.1% and 3.2%, respectively. Regarding the electric field required to achieve 90% of the maximum transmission in the ON state (E-on), the one presented by the devices assembled with commercial ITO coated glasses is 2.41 V/mu m while the one presented by the devices assembled with InOx coated glasses is smaller, 1.77 V/mu m. These results corroborate the device quality that depends on the base materials and fabrication process used. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vacuum, Vol. 64

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cubic cobalt nitride films were grown onto different single crystalline substrates Al2O3 (0 0 0 1) and (1 1 View the MathML source 0), MgO (1 0 0) and (1 1 0) and TiO2 (1 0 0) and (1 1 0). The films display low atomic densities compared with the bulk material, are ferromagnetic and have metallic electrical conductivity. X-ray diffraction and X-ray absorption fine structure confirm the cubic structure of the films and with RBS results indicate that samples are not homogeneous at the microscopic scale, coexisting Co4+xN nitride with nitrogen rich regions. The magnetization of the films decreases with increase of the nitrogen content, variation that is shown to be due to the decrease of the cobalt density, and not to a decrease of the magnetic moment per cobalt ion. The films are crystalline with a nitrogen deficient stoichiometry and epitaxial with orientation determined by the substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A persistent photoconductivity effect (PPC) has been investigated in Cu2ZnSnS4 thin films and solar cells as a function of temperature. An anomalous increase of the PPC decay time with temperature was observed in all samples. The PPC decay time activation energy was found to increase when temperature rises above a crossover value, and also to grow with the increase of the sulfurization temperature and pressure. Both the anomalous behavior of the PPC decay time and the existence of two different activation energies are explained in terms of local potential fluctuations in the band edges of CZTS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The opto-electronic properties of copper zinc tin sulfide can be tuned to achieve better cell efficiencies by controlled incorporation of selenium. In this paper we report the growth of Cu2ZnSn(S,Se)4 (CZTSSe) using a hybrid process involving the sequential evaporation of Zn and sputtering of the sulfide precursors of Cu and Sn, followed by a selenization step. Two approaches for selenization were followed, one using a tubular furnace and the other using a rapid thermal processor. The effects of annealing conditions on the morphological and structural properties of the films were investigated. Scanning electron microscopy and energy dispersive spectroscopy were employed to investigate the morphology and composition of the films. Structural analyses were done using X-ray diffraction (XRD) and Raman spectroscopy. Structural analyses revealed the formation of CZTSSe. This study shows that regardless of the selenization method a temperature above 450 °C is required for conversion of precursors to a compact CZTSSe layer. XRD and Raman analysis suggests that the films selenized in the tubular furnace are selenium rich whereas the samples selenized in the rapid thermal processor have higher sulfur content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Nanotecnologia e Nanociência

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química Sustentável

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vanadium dioxide (VO2) is a promising material with large interest in construction industry and architecture, due to its thermochromic properties. This material may be used to create "smart" coatings that result in improvements in the buildings energy efficiency, by reducing heat exchanges and, consequently, the need for acclimatization. In this work, VO2 thin films and coatings were produced and tested in laboratory, to apply in architectural elements, such as glass, rooftop tiles and exterior paints. Thin films were produced by RF magnetron sputtering and VO2 nanoparticles were obtained through hydrothermal synthesis, aiming to create "smart" windows and tiles, respectively. These coatings have demonstrated the capability to modulate the transmittance of infrared radiation by around 20%. The VO2 nanoparticle coatings were successfully applied on ceramic tiles. The critical temperature was reduced to around 40ºC by tungsten doping. Ultimately, two identical house models were built, in order to test the VO2 coatings, in real atmospheric conditions during one of the hottest months of the year, in Portugal – August.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the changes in the structural and morphological features occurring in a particular type of nanocomposite thin-film system, composed of Au nanoparticles (NPs) dispersed in a host TiO2 dielectric matrix. The structural and morphological changes, promoted by in-vacuum annealing experiments of the as-deposited thin films at different temperatures (ranging from 200 to 800 C), resulted in a well-known localized surface plasmon resonance (LSPR) phenomenon, which gave rise to a set of different optical responses that can be tailored for a wide number of applications, including those for optical-based sensors. The results show that the annealing experiments enabled a gradual increase of the mean grain size of the Au NPs (from 2 to 23 nm), and changes in their distributions and separations within the dielectric matrix. For higher annealing temperatures of the as-deposited films, a broad size distribution of Au NPs was found (sizes up to 100 nm). The structural conditions necessary to produce LSPR activity were found to occur for annealing experiments above 300 C, which corresponded to the crystallization of the gold NPs, with an average size strongly dependent on the annealing temperature itself. The main factor for the promotion of LSPR was the growth of gold NPs and their redistribution throughout the host matrix. On the other hand, the host matrix started to crystallize at an annealing temperature of about 500 C, which is an important parameter to explain the shift of the LSPR peak position to longer wavelengths, i.e. a red-shift.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, Ag:SiC nanocermets were prepared via rapid thermal annealing (RTA) of pulsed laser-deposited SiC/Ag/SiC trilayers grown on Si substrate. Atomic force microscope images show that silver nanoparticles (Ag NPs) are formed after RTA, and the size of NPs increases with increasing Ag deposition time (t Ag). Sharp dip observed in the reflectance spectra confirmed the existence of Ag surface plasmons (SPs). The infrared transmission spectra showed an intense and broad absorption band around 780–800 cm−1 that can be assigned to Si-C stretching vibration mode. Influence of t Ag on the spectral characteristics of SP-enhanced photoluminescence (PL) and electrical properties of silicon carbide (SiC) films has been investigated. The maximum PL enhancement by 5.5 times for Ag:SiC nanocermets is achieved when t Ag ≈ 50 s. This enhancement is due to the strong resonant coupling between SiC and the SP oscillations of the Ag NPs. Presence of Ag NPs in SiC also induces a forming-free resistive switching with switching ratio of 2 × 10−2. The analysis of I–V curves demonstrates that the trap-controlled space-charge-limited conduction with filamentary model is the governing mechanism for the resistive switching in nanocerment thin films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exceptional properties of localised surface plasmons (LSPs), such as local field enhancement and confinement effects, resonant behavior, make them ideal candidates to control the emission of luminescent nanoparticles. In the present work, we investigated the LSP effect on the steady-state and time-resolved emission properties of quantum dots (QDs) by organizing the dots into self-assembled dendrite structures deposited on plasmonic nanostructures. Self-assembled structures consisting of water-soluble CdTe mono-size QDs, were developed on the surface of co-sputtered TiO2 thin films doped with Au nanoparticles (NPs) annealed at different temperatures. Their steady-state fluorescence properties were probed by scanning the spatially resolved emission spectra and the energy transfer processes were investigated by the fluorescence lifetime imaging (FLIM) microscopy. Our results indicate that a resonant coupling between excitons confined in QDs and LSPs in Au NPs located beneath the self-assembled structure indeed takes place and results in (i) a shift of the ground state luminescence towards higher energies and onset of emission from excited states in QDs, and (ii) a decrease of the ground state exciton lifetime (fluorescence quenching).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles were dispersed in two different dielectric matrices, TiO2 and Al2O3, using magnetron sputtering and a post-deposition annealing treatment. The main goal of the present work was to study how the two different host dielectric matrices, and the resulting microstructure evolution (including both the nanoparticles and the host matrix itself) promoted by thermal annealing, influenced the physical properties of the films. In particular, the structure and morphology of the nanocomposites were correlated with the optical response of the thin films, namely their localized surface plasmon resonance (LSPR) characteristics. Furthermore, and in order to scan the future application of the two thin film system in different types of sensors (namely biological ones), their functional behaviour (hardness and Young's modulus change) was also evaluated. Despite the similar Au concentrations in both matrices (~ 11 at.%), very different microstructural features were observed, which were found to depend strongly on the annealing temperature. The main structural differences included: (i) the early crystallization of the TiO2 host matrix, while the Al2O3 one remained amorphous up to 800 °C; (ii) different grain size evolution behaviours with the annealing temperature, namely an almost linear increase for the Au:TiO2 system (from 3 to 11 nm), and the approximately constant values observed in the Au:Al2O3 system (4–5 nm). The results from the nanoparticle size distributions were also found to be quite sensitive to the surrounding matrix, suggesting different mechanisms for the nanoparticle growth (particle migration and coalescence dominating in TiO2 and Ostwald ripening in Al2O3). These different clustering behaviours induced different transmittance-LSPR responses and a good mechanical stability, which opens the possibility for future use of these nanocomposite thin film systems in some envisaged applications (e.g. LSPR-biosensors).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, Ba0.8Sr0.2TiO3 (BST)/ITO structures were grown on glass substrate and laser assisted annealing (LAA) was performed to promote the crystallization of BST. Atomic force microscopy and X-ray diffraction studies confirm the crack free and polycrystalline perovskite phase of BST. White light controlled resistive switching (RS) effect in Au/BST/ITO device is investigated. The device displays the electroforming-free bipolar RS characteristics and are explained by the modulationof the width and height of barrier at the BST/ITO interface via ferroelectric polarization. Moreover, the RS effect is signifi- cantly improved under white light illumination compared to that in the dark. The enhanced RS and photovoltaic effects are explained by considering depolarization field and charge distribution at the interface. The devices exhibit stable retention characteristics with low currents (mA), which make them attractive for non volatile memory devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

tThe main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOzthin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposi-tion: the flow of the reactive gases mixture (N2and O2, with a constant concentration ratio of 17:3); thesubstrate voltage bias (grounded, −50 V or −100 V) and the substrate (glass, (1 0 0) Si or high speed steel).The obtained films exhibit significant differences. The variation of the deposition parameters inducesvariations of the composition, microstructure and morphology. These differences cause variation of theelectrical resistivity essentially correlated with the composition and structural changes. The gradualdecrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity.The dielectric characteristics of some of the high resistance TaxNyOzfilms were obtained in the sampleswith a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectricTaxNyOzfilms). Some of these films exhibited dielectric constant values higher than those reported forother tantalum based dielectric films.