834 resultados para cameras
Resumo:
Mode of access: Internet.
Resumo:
Acknowledgements This work received funding from the Marine Alliance for Science and Technology for Scotland (MASTS) pooling initiative and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. We thank Joshua Lawrence and Niall Fallon for their assistance in collecting some of the video data.
Resumo:
Faces are complex patterns that often differ in only subtle ways. Face recognition algorithms have difficulty in coping with differences in lighting, cameras, pose, expression, etc. We propose a novel approach for facial recognition based on a new feature extraction method called fractal image-set encoding. This feature extraction method is a specialized fractal image coding technique that makes fractal codes more suitable for object and face recognition. A fractal code of a gray-scale image can be divided in two parts – geometrical parameters and luminance parameters. We show that fractal codes for an image are not unique and that we can change the set of fractal parameters without significant change in the quality of the reconstructed image. Fractal image-set coding keeps geometrical parameters the same for all images in the database. Differences between images are captured in the non-geometrical or luminance parameters – which are faster to compute. Results on a subset of the XM2VTS database are presented.
Resumo:
Access All was performance produced following a three-month mentorship in web-based performance that I was commissioned to conduct for the performance company Igneous. This live, triple-site performance event for three performers in three remote venues was specifically designed for presentation at Access Grid Nodes - conference rooms located around the globe equipped with a high end, open source computer teleconferencing technology that allowed multiple nodes to cross-connect with each other. Whilst each room was setup somewhat differently they all deployed the same basic infrastructre of multiple projectors, cameras, and sound as well as a reconfigurable floorspace. At that time these relatively formal setups imposed a clear series of limitations in terms of software capabilities and basic infrastructure and so there was much interest in understanding how far its capabilities might be pushed.----- Numerous performance experiments were undertaken between three Access Grid nodes in QUT Brisbane, VISLAB Sydney and Manchester Supercomputing Centre, England, culminating in the public performance staged simultaneously between the sites with local audiences at each venue and others online. Access All was devised in collaboration with interdisciplinary performance company Bonemap, Kelli Dipple (Interarts curator, Tate Modern London) and Mike Stubbs British curator and Director of FACT (Liverpool).----- This period of research and development was instigated and shaped by a public lecture I had earlier delivered in Sydney for the ‘Global Access Grid Network, Super Computing Global Conference’ entitled 'Performance Practice across Electronic Networks'. The findings of this work went on to inform numerous future networked and performative works produced from 2002 onwards.
Resumo:
For robots to operate in human environments they must be able to make their own maps because it is unrealistic to expect a user to enter a map into the robot’s memory; existing floorplans are often incorrect; and human environments tend to change. Traditionally robots have used sonar, infra-red or laser range finders to perform the mapping task. Digital cameras have become very cheap in recent years and they have opened up new possibilities as a sensor for robot perception. Any robot that must interact with humans can reasonably be expected to have a camera for tasks such as face recognition, so it makes sense to also use the camera for navigation. Cameras have advantages over other sensors such as colour information (not available with any other sensor), better immunity to noise (compared to sonar), and not being restricted to operating in a plane (like laser range finders). However, there are disadvantages too, with the principal one being the effect of perspective. This research investigated ways to use a single colour camera as a range sensor to guide an autonomous robot and allow it to build a map of its environment, a process referred to as Simultaneous Localization and Mapping (SLAM). An experimental system was built using a robot controlled via a wireless network connection. Using the on-board camera as the only sensor, the robot successfully explored and mapped indoor office environments. The quality of the resulting maps is comparable to those that have been reported in the literature for sonar or infra-red sensors. Although the maps are not as accurate as ones created with a laser range finder, the solution using a camera is significantly cheaper and is more appropriate for toys and early domestic robots.
Resumo:
Principal Topic High technology consumer products such as notebooks, digital cameras and DVD players are not introduced into a vacuum. Consumer experience with related earlier generation technologies, such as PCs, film cameras and VCRs, and the installed base of these products strongly impacts the market diffusion of the new generation products. Yet technology substitution has received only sparse attention in the diffusion of innovation literature. Research for consumer durables has been dominated by studies of (first purchase) adoption (c.f. Bass 1969) which do not explicitly consider the presence of an existing product/technology. More recently, considerable attention has also been given to replacement purchases (c.f. Kamakura and Balasubramanian 1987). Only a handful of papers explicitly deal with the diffusion of technology/product substitutes (e.g. Norton and Bass, 1987: Bass and Bass, 2004). They propose diffusion-type aggregate-level sales models that are used to forecast the overall sales for successive generations. Lacking household data, these aggregate models are unable to give insights into the decisions by individual households - whether to adopt generation II, and if so, when and why. This paper makes two contributions. It is the first large-scale empirical study that collects household data for successive generations of technologies in an effort to understand the drivers of adoption. Second, in comparision to traditional analysis that evaluates technology substitution as an ''adoption of innovation'' type process, we propose that from a consumer's perspective, technology substitution combines elements of both adoption (adopting the new generation technology) and replacement (replacing the generation I product with generation II). Based on this proposition, we develop and test a number of hypotheses. Methodology/Key Propositions In some cases, successive generations are clear ''substitutes'' for the earlier generation, in that they have almost identical functionality. For example, successive generations of PCs Pentium I to II to III or flat screen TV substituting for colour TV. More commonly, however, the new technology (generation II) is a ''partial substitute'' for existing technology (generation I). For example, digital cameras substitute for film-based cameras in the sense that they perform the same core function of taking photographs. They have some additional attributes of easier copying and sharing of images. However, the attribute of image quality is inferior. In cases of partial substitution, some consumers will purchase generation II products as substitutes for their generation I product, while other consumers will purchase generation II products as additional products to be used as well as their generation I product. We propose that substitute generation II purchases combine elements of both adoption and replacement, but additional generation II purchases are solely adoption-driven process. Extensive research on innovation adoption has consistently shown consumer innovativeness is the most important consumer characteristic that drives adoption timing (Goldsmith et al. 1995; Gielens and Steenkamp 2007). Hence, we expect consumer innovativeness also to influence both additional and substitute generation II purchases. Hypothesis 1a) More innovative households will make additional generation II purchases earlier. 1 b) More innovative households will make substitute generation II purchases earlier. 1 c) Consumer innovativeness will have a stronger impact on additional generation II purchases than on substitute generation II purchases. As outlined above, substitute generation II purchases act, in part like a replacement purchase for the generation I product. Prior research (Bayus 1991; Grewal et al 2004) identified product age as the most dominant factor influencing replacements. Hence, we hypothesise that: Hypothesis 2: Households with older generation I products will make substitute generation II purchases earlier. Our survey of 8,077 households investigates their adoption of two new generation products: notebooks as a technology change to PCs, and DVD players as a technology shift from VCRs. We employ Cox hazard modelling to study factors influencing the timing of a household's adoption of generation II products. We determine whether this is an additional or substitute purchase by asking whether the generation I product is still used. A separate hazard model is conducted for additional and substitute purchases. Consumer Innovativeness is measured as domain innovativeness adapted from the scales of Goldsmith and Hofacker (1991) and Flynn et al. (1996). The age of the generation I product is calculated based on the most recent household purchase of that product. Control variables include age, size and income of household, and age and education of primary decision-maker. Results and Implications Our preliminary results confirm both our hypotheses. Consumer innovativeness has a strong influence on both additional purchases (exp = 1.11) and substitute purchases (exp = 1.09). Exp is interpreted as the increased probability of purchase for an increase of 1.0 on a 7-point innovativeness scale. Also consistent with our hypotheses, the age of the generation I product has a dramatic influence for substitute purchases of VCR/DVD (exp = 2.92) and a strong influence for PCs/notebooks (exp = 1.30). Exp is interpreted as the increased probability of purchase for an increase of 10 years in the age of the generation I product. Yet, also as hypothesised, there was no influence on additional purchases. The results lead to two key implications. First, there is a clear distinction between additional and substitute purchases of generation II products, each with different drivers. Treating these as a single process will mask the true drivers of adoption. For substitute purchases, product age is a key driver. Hence, implications for marketers of high technology products can utilise data on generation I product age (e.g. from warranty or loyalty programs) to target customers who are more likely to make a purchase.
Resumo:
Manual calibration of large and dynamic networks of cameras is labour intensive and time consuming. This is a strong motivator for the development of automatic calibration methods. Automatic calibration relies on the ability to find correspondences between multiple views of the same scene. If the cameras are sparsely placed, this can be a very difficult task. This PhD project focuses on the further development of uncalibrated wide baseline matching techniques.
Resumo:
Automatic detection of suspicious activities in CCTV camera feeds is crucial to the success of video surveillance systems. Such a capability can help transform the dumb CCTV cameras into smart surveillance tools for fighting crime and terror. Learning and classification of basic human actions is a precursor to detecting suspicious activities. Most of the current approaches rely on a non-realistic assumption that a complete dataset of normal human actions is available. This paper presents a different approach to deal with the problem of understanding human actions in video when no prior information is available. This is achieved by working with an incomplete dataset of basic actions which are continuously updated. Initially, all video segments are represented by Bags-Of-Words (BOW) method using only Term Frequency-Inverse Document Frequency (TF-IDF) features. Then, a data-stream clustering algorithm is applied for updating the system's knowledge from the incoming video feeds. Finally, all the actions are classified into different sets. Experiments and comparisons are conducted on the well known Weizmann and KTH datasets to show the efficacy of the proposed approach.
Resumo:
In public venues, crowd size is a key indicator of crowd safety and stability. Crowding levels can be detected using holistic image features, however this requires a large amount of training data to capture the wide variations in crowd distribution. If a crowd counting algorithm is to be deployed across a large number of cameras, such a large and burdensome training requirement is far from ideal. In this paper we propose an approach that uses local features to count the number of people in each foreground blob segment, so that the total crowd estimate is the sum of the group sizes. This results in an approach that is scalable to crowd volumes not seen in the training data, and can be trained on a very small data set. As a local approach is used, the proposed algorithm can easily be used to estimate crowd density throughout different regions of the scene and be used in a multi-camera environment. A unique localised approach to ground truth annotation reduces the required training data is also presented, as a localised approach to crowd counting has different training requirements to a holistic one. Testing on a large pedestrian database compares the proposed technique to existing holistic techniques and demonstrates improved accuracy, and superior performance when test conditions are unseen in the training set, or a minimal training set is used.