996 resultados para c MET gene


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Light is a universal signal perceived by organisms, including fungi, in which light regulates common and unique biological processes depending on the species. Previous research has established that conserved proteins, originally called White collar 1 and 2 from the ascomycete Neurospora crassa, regulate UV/blue light sensing. Homologous proteins function in distant relatives of N. crassa, including the basidiomycetes and zygomycetes, which diverged as long as a billion years ago. Here we conducted microarray experiments on the basidiomycete fungus Cryptococcus neoformans to identify light-regulated genes. Surprisingly, only a single gene was induced by light above the commonly used twofold threshold. This gene, HEM15, is predicted to encode a ferrochelatase that catalyses the final step in haem biosynthesis from highly photoreactive porphyrins. The C. neoformans gene complements a Saccharomyces cerevisiae hem15Delta strain and is essential for viability, and the Hem15 protein localizes to mitochondria, three lines of evidence that the gene encodes ferrochelatase. Regulation of HEM15 by light suggests a mechanism by which bwc1/bwc2 mutants are photosensitive and exhibit reduced virulence. We show that ferrochelatase is also light-regulated in a white collar-dependent fashion in N. crassa and the zygomycete Phycomyces blakesleeanus, indicating that ferrochelatase is an ancient target of photoregulation in the fungal kingdom.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combination treatment regimens that include topoisomerase-II-targeted drugs, such as doxorubicin, are widely used in the treatment of breast cancer. Previously, we demonstrated that IFN-� and doxorubicin co-treatment synergistically induced apoptosis in MDA435 breast cancer cells in a STAT1-dependent manner. In this study, we found that this synergy was caspase 8-dependent. In addition, we found that IFN-γ down-regulated the expression of the caspase 8 inhibitor c-FLIP. Furthermore, IFN-� down-regulated c-FLIP in a manner that was dependent on the transcription factors STAT1 and IRF1. However, IFN-� had no effect on c-FLIP mRNA levels, indicating that c-FLIP was down-regulated at a post-transcriptional level following IFN-� treatment. Characterisation of the functional significance of c-FLIP modulation by siRNA gene silencing and stable over-expression studies, revealed it to be a key regulator of IFN-γ- and doxorubicin-induced apoptosis in MDA435 cells. Analysis of a panel of breast cancer cell lines indicated that c-FLIP was an important general determinant of doxorubicin- and IFN-�-induced apoptosis in breast cancer cells. Furthermore, c-FLIP gene silencing sensitised MDA435 cells to other chemotherapies, including etoposide, mitoxantrone and SN-38. These results suggest that c-FLIP plays a pivotal role in modulating drug-induced apoptosis in breast cancer cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structure-based modeling methods have been used to design a series of disubstituted triazole-linked acridine compounds with selectivity for human telomeric quadruplex DNAs. A focused library of these compounds was prepared using click chemistry and the selectivity concept was validated against two promoter quadruplexes from the c-kit gene with known molecular structures, as well as with duplex DNA using a FRET-based melting method. Lead compounds were found to have reduced effects on the thermal stability of the c-kit quadruplexes and duplex DNA structures. These effects were further explored with a series of competition experiments, which confirmed that binding to duplex DNA is very low even at high duplex:telomeric quadruplex ratios. Selectivity to the c-kit quadruplexes is more complex, with some evidence of their stabilization at increasing excess over human telomeric quadruplex DNA. Selectivity is a result of the dimensions of the triazole-acridine compounds; and in particular the separation of the two alkyl-amino terminal groups. Both lead compounds also have selective inhibitory effects on the proliferation of cancer cell lines compared to a normal cell line, and one has been shown to inhibit the activity of the telomerase enzyme, which is selectively expressed in tumor cells, where it plays a role in maintaining telomere integrity and cellular immortalization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inflammation and TNF-alpha signaling play a central role in most of the pathological conditions where cell transplantation could be applied. As shown by initial experiments, embryonic stem (ES) cells and ES-cell derived vascular cells express very low levels of TNF-alpha receptor I (TNFRp55) and thus do not induce cytokine expression in response to TNF-alpha stimulation. Transient transfection analysis of wild-type or deletion variants of the TNFRp55 gene promoter showed a strong activity for a 250-bp fragment in the upstream region of the gene. This activity was abolished by mutations targeting the Sp1/Sp3 or AP1 binding sites. Moreover, treatment with trichostatin A (TSA) led to a pronounced increase in TNFRp55 mRNA and promoter activity. Overexpression of Sp1 or c-fos further enhanced the TSA-induced luciferase activity, and this response was attenuated by Sp3 or c-jun coexpression. Additional experiments revealed that TSA did not affect the Sp1/Sp3 ratio but caused transcriptional activation of the c-fos gene. Thus, we provide the first evidence that ES and ES-cell-derived vascular cells lack cytokine expression in response to TNF-alpha stimulation due to low levels of c-fos and transcriptional activation of Sp1 that can be regulated by inhibition of histone deacetylase activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inhibition of the PI3K (phosphoinositide 3-kinase)/Akt/mTORC1 (mammalian target of rapamycin complex 1) and Ras/MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK pathways for cancer therapy has been pursued for over a decade with limited success. Emerging data have indicated that only discrete subsets of cancer patients have favourable responses to these inhibitors. This is due to genetic mutations that confer drug insensitivity and compensatory mechanisms. Therefore understanding of the feedback mechanisms that occur with respect to specific genetic mutations may aid identification of novel biomarkers that predict patient response. In the present paper, we show that feedback between the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways is cell-line-specific and highly dependent on the activating mutation of K-Ras or overexpression c-Met. We found that cell lines exhibited differential signalling and apoptotic responses to PD184352, a specific MEK inhibitor, and PI103, a second-generation class I PI3K inhibitor. We reveal that feedback from the PI3K/Akt/mTORC1 to the Ras/MEK/ERK pathway is present in cancer cells harbouring either K-Ras activating mutations or amplification of c-Met but not the wild-type counterparts. Moreover, we demonstrate that inhibition of protein phosphatase activity by OA (okadaic acid) restored PI103-mediated feedback in wild-type cells. Together, our results demonstrate a novel mechanism for feedback between the PI3K/Akt/mTORC1 and the Ras/MEK/ERK pathways that only occurs in K-Ras mutant and c-Met amplified cells but not the isogenic wild-type cells through a mechanism that may involve inhibition of a specific endogenous phosphatase(s) activity. We conclude that monitoring K-Ras and c-Met status are important biomarkers for determining the efficacy of PI103 and other PI3K/Akt inhibitors in cancer therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CCAAT enhancer binding protein α (C/EBPα) plays an essential role in cellular differentiation, growth, and energy metabolism. Here, we investigate the correlation between C/EBPα and hepatocellular carcinoma (HCC) patient outcomes and how C/EBPα protects cells against energy starvation. Expression of C/EBPα protein was increased in the majority of HCCs examined (191 pairs) compared with adjacent nontumor liver tissues in HCC tissue microarrays. Its upregulation was correlated significantly with poorer overall patient survival in both Kaplan-Meier survival (P = 0.017) and multivariate Cox regression (P = 0.028) analyses. Stable C/EBPα-silenced cells failed to establish xenograft tumors in nude mice due to extensive necrosis, consistent with increased necrosis in human C/EBPα-deficient HCC nodules. Expression of C/EBPα protected HCC cells in vitro from glucose and glutamine starvation-induced cell death through autophagy-involved lipid catabolism. Firstly, C/EBPα promoted lipid catabolism during starvation, while inhibition of fatty acid beta-oxidation significantly sensitized cell death. Secondly, autophagy was activated in C/EBPα-expressing cells, and the inhibition of autophagy by ATG7 knockdown or chloroquine treatment attenuated lipid catabolism and subsequently sensitized cell death. Finally, we identified TMEM166 as a key player in C/EBPα-mediated autophagy induction and protection against starvation.

CONCLUSION: The C/EBPα gene is important in that it links HCC carcinogenesis to autophagy-mediated lipid metabolism and resistance to energy starvation; its expression in HCC predicts poorer patient prognosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Development of colorectal cancer occurs via a number of key pathways, with the clinicopathological features of specific subgroups being driven by underlying molecular changes. Mutations in key genes within the network of signalling pathways have been identified; however, therapeutic strategies to target these aberrations remain limited. As understanding of the biology of colorectal cancer has improved, this has led to a move toward broader genomic testing, collaborative research and innovative, adaptive clinical trial design. Recent developments in therapy include the routine adoption of wider mutational spectrum testing prior to use of targeted therapies and the first promise of effective immunotherapy for colorectal cancer patients. This review details current biomarkers in colorectal cancer for molecular stratification and for treatment allocation purposes, including open and planned precision medicine trials. Advances in our understanding, therapeutic strategy and technology will also be outlined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuropeptides are the largest group of signalling chemicals that can convey the information from the brain to the cells of all tissues. DPKQDFMRFamide, a member of one of the largest families of neuropeptides, FMRFamide-like peptides, has modulatory effects on nerve-evoked contractions of Drosophila body wall muscles (Hewes et aI.,1998) which are at least in part mediated by the ability of the peptide to enhance neurotransmitter release from the presynaptic terminal (Hewes et aI., 1998, Dunn & Mercier., 2005). However, DPKQDFMRFamide is also able to act directly on Drosophila body wall muscles by inducing contractions which require the influx of extracellular Ca 2+ (Clark et aI., 2008). The present study was aimed at identifying which proteins, including the membrane-bound receptor and second messenger molecules, are involved in mechanisms mediating this myotropic effect of the peptide. DPKQDFMRFamide induced contractions were reduced by 70% and 90%, respectively, in larvae in which FMRFamide G-protein coupled receptor gene (CG2114) was silenced either ubiquitously or specifically in muscle tissue, when compared to the response of the control larvae in which the expression of the same gene was not manipulated. Using an enzyme immunoassay (EIA) method, it was determined that at concentrations of 1 ~M- 0.01 ~M, the peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. In addition, the physiological effect of DPKQDFMRFamide at a threshold dose was not potentiated by 3-lsobutyl-1-methylxanthine, a phosphodiesterase inhibitor, nor was the response to 1 ~M peptide blocked or reduced by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. The response to DPKQDFMRFamide was not affected in the mutants of the phosholipase C-~ (PLC~) gene (norpA larvae) or IP3 receptor mutants, which suggested that the PLC-IP3 pathway is not involved in mediat ing the peptide's effects. Alatransgenic flies lacking activity of calcium/calmodul in-dependent protein kinase (CamKII showed an increase in muscle tonus following the application of 1 JlM DPKQDFMRFamide similar to the control larvae. Heat shock treatment potentiated the response to DPKQDFMRFamide in both ala1 and control flies by approximately 150 and 100 % from a non heat-shocked larvae, respectively. Furthermore, a CaMKII inhibitor, KN-93, did not affect the ability of peptide to increase muscle tonus. Thus, al though DPKQDFMRFamide acts through a G-protein coupled FMRFamide receptor, it does not appear to act via cAMP, cGMP, IP3, PLC or CaMKl1. The mechanism through which the FMRFamide receptor acts remains to be determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drosophila melanogaster is a model system for examining the mechanisms of action of neuropeptides. DPKQDFMRFamide was previously shown to induce contractions in Drosophila body wall muscle fibres in a Ca(2+)-dependent manner. The present study examined the possible involvement of a G-protein-coupled receptor and second messengers in mediating this myotropic effect after removal of the central nervous system. DPKQDFMRFamide-induced contractions were reduced by 70% and 90%, respectively, in larvae with reduced expression of the Drosophila Fmrf receptor (FR) either ubiquitously or specifically in muscle tissue, compared with the response in control larvae in which expression was not manipulated. No such effect occurred in larvae with reduced expression of this gene only in neurons. The myogenic effects of DPKQDFMRFamide do not appear to be mediated through either of the two Drosophila myosuppressin receptors (DmsR-1 and DmsR-2). DPKQDFMRFamide-induced contractions were not reduced in Ala1 transgenic flies lacking activity of calcium/calmodulin-dependent protein kinase (CamKII), and were not affected by the CaMKII inhibitor KN-93. Peptide-induced contractions in the mutants of the phospholipase C-β (PLCβ) gene (norpA larvae) and in IP3 receptor mutants were similar to contractions elicited in control larvae. The peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. Peptide-induced contractions were not potentiated by 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, and were not antagonized by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. Additionally, exogenous application of arachidonic acid failed to induce myogenic contractions. Thus, DPKQDFMRFamide induces contractions via a G-protein coupled FMRFamide receptor in muscle cells but does not appear to act via cAMP, cGMP, IP3, PLC, CaMKII or arachidonic acid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Candida albicans est une levure pathogène qui, à l’état commensal, colonise les muqueuses de la cavité orale et du tractus gastro-intestinal. De nature opportuniste, C. albicans cause de nombreuses infections, allant des candidoses superficielles (muguet buccal, vulvo-vaginite) aux candidoses systémiques sévères. C. albicans a la capacité de se développer sous diverses morphologies, telles que les formes levures, pseudohyphes et hyphes. Des stimuli environnementaux mimant les conditions retrouvées chez l’hôte (température de 37°C, pH neutre, présence de sérum) induisent la transition levure-à-hyphe (i.e. morphogenèse ou filamentation). Cette transition morphologique contribue à la pathogénicité de C. albicans, du fait que des souches présentant un défaut de filamentation sont avirulentes. Non seulement la morphogenèse est un facteur de virulence, mais elle constituerait aussi une cible pour le développement d’antifongiques. En effet, il a déjà été démontré que l’inhibition de la transition levure-à-hyphe atténuait la virulence de C. albicans lors d’infections systémiques. Par ailleurs, des études ont démontré que de nombreuses molécules pouvaient moduler la morphogenèse. Parmi ces molécules, certains acides gras, dont l’acide linoléique conjugué (CLA), inhibent la formation d’hyphes. Ainsi, le CLA posséderait des propriétés thérapeutiques, du fait qu’il interfère avec un déterminant de pathogénicité de C. albicans. Par contre, avant d’évaluer son potentiel thérapeutique dans un contexte clinique, il est essentiel d’étudier son mode d’action. Ce projet vise à caractériser l’activité anti-filamentation des acides gras et du CLA et à déterminer le mécanisme par lequel ces molécules inhibent la morphogenèse chez C. albicans. Des analyses transcriptomiques globales ont été effectuées afin d’obtenir le profil transcriptionnel de la réponse de C. albicans au CLA. L’acide gras a entraîné une baisse des niveaux d’expression de gènes encodant des protéines hyphes-spécifiques et des régulateurs de morphogenèse, dont RAS1. Ce gène code pour la GTPase Ras1p, une protéine membranaire de signalisation qui joue un rôle important dans la transition levure-à-hyphe. Des analyses de PCR quantitatif ont confirmé que le CLA inhibait l’induction de RAS1. De plus, le CLA a non seulement causé une baisse des niveaux cellulaires de Ras1p, mais a aussi entraîné sa délocalisation de la membrane plasmique. En affectant les niveaux et la localisation cellulaire de Ras1p, le CLA nuit à l’activation de la voie de signalisation Ras1p-dépendante, inhibant ainsi la morphogenèse. Il est possible que le CLA altère la structure de la membrane plasmique et affecte indirectement la localisation membranaire de Ras1p. Ces travaux ont permis de mettre en évidence le mode d’action du CLA. Le potentiel thérapeutique du CLA pourrait maintenant être évalué dans un contexte d’infection, permettant ainsi de vérifier qu’une telle approche constitue véritablement une stratégie pour le traitement des candidoses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Satellite cells, originating in the embryonic dermamyotome, reside beneath the myofibre of mature adult skeletal muscle and constitute the tissue-specific stem cell population. Recent advances following the identification of markers for these cells (including Pax7, Myf5, c-Met and CD34) (CD, cluster of differentiation; c-Met, mesenchymal epithelial transition factor) have led to a greater understanding of the role played by satellite cells in the regeneration of new skeletal muscle during growth and following injury. In response to muscle damage, satellite cells harbour the ability both to form myogenic precursors and to self-renew to repopulate the stem cell niche following myofibre damage. More recently, other stem cell populations including bone marrow stem cells, skeletal muscle side population cells and mesoangioblasts have also been shown to have myogenic potential in culture, and to be able to form skeletal muscle myofibres in vivo and engraft into the satellite cell niche. These cell types, along with satellite cells, have shown potential when used as a therapy for skeletal muscle wasting disorders where the intrinsic stem cell population is genetically unable to repair non-functioning muscle tissue. Accurate understanding of the mechanisms controlling satellite cell lineage progression and self-renewal as well as the recruitment of other stem cell types towards the myogenic lineage is crucial if we are to exploit the power of these cells in combating myopathic conditions. Here we highlight the origin, molecular regulation and therapeutic potential of all the major cell types capable of undergoing myogenic differentiation and discuss their potential therapeutic application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS) is an incurable neuromuscular disease that leads to a profound loss of life quality and premature death. Around 10% of the cases are inherited and ALS8 is an autosomal dominant form of familial ALS caused by mutations in the vamp-associated protein B/C (VAPB) gene. The VAPB protein is involved in many cellular processes and it likely contributes to the pathogenesis of other forms of ALS besides ALS8. A number of successful drug tests in ALS animal models could not be translated to humans underscoring the need for novel approaches. The induced pluripotent stem cells (iPSC) technology brings new hope, since it can be used to model and investigate diseases in vitro. Here we present an additional tool to study ALS based on ALS8-iPSC. Fibroblasts from ALS8 patients and their non-carrier siblings were successfully reprogrammed to a pluripotent state and differentiated into motor neurons. We show for the first time that VAPB protein levels are reduced in ALS8-derived motor neurons but, in contrast to over-expression systems, cytoplasmic aggregates could not be identified. Our results suggest that optimal levels of VAPB may play a central role in the pathogenesis of ALS8, in agreement with the observed reduction of VAPB in sporadic ALS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We used c-Fos immunoreactivity to estimate neuronal activation in hypothalamic feeding-regulatory areas of 3-month-old rats fed control or oil-enriched diets (soy or fish) since weaning. While no diet effect was observed in c-Fos immunoreactivity of 24-h fasted animals, the acute response to refeeding was modified by both hyperlipidic diets but with different patterns. Upon refeeding, control-diet rats had significantly increased c-Fos immunoreactivity only in the paraventricular hypothalamic nucleus (PVH, 142%). In soy-diet rats, refeeding with the soy diet increased c-Fos immunoreactivity in dorsomedial hypothalamic nucleus (DMH, 271%) and lateral hypothalamic area (LH, 303%). Refeeding fish-diet rats with the fish diet increased c-Fos immunoreactivity in PVH (161%), DMH (177%), VMH (81%), and ARC (127%). Compared to the fish-diet, c-Fos immunoreactivity was increased in LH by the soy-diet while it was decreased in ventromedial hypothalamic nucleus (VMH) and arcuate hypothalamic nucleus (ARC). Based on the known roles of the activated nuclei, it is suggested that, unlike the fish-diet, the soy-diet induced a potentially obesogenic profile, with high LH and low VMH/PVH activation after refeeding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis is a thermo-dimorphic fungus that is the causative agent of paracoccidioidomyicosis (PCM), a human systemic granulomatous mycosis found in Latin America. Dimorphic transition from mycelium to yeast is required for establishing pathogenicity. Dimorphism is marked by changes in mitochondrial physiology, including modulation of respiration rate. In this work, we present the identification of three P. brasiliensis nuclear genes PbCOX9, PbCOX12, and PbCOX16 that code for structural sub-units and a putative assembly facilitator (PbCOX16) of the mitochondrial cytochrome c oxidase (COX), the terminal enzyme complex of the respiratory chain. We measured their expression pattern during the dimorphic transition from mycelium to yeast and back by real-time reverse transcription quantitative polymerase chain reaction (real-time RT-qPCR). Our results show that messages from these genes increase during the mycelium to yeast transition and decrease during the opposite conversion. This result supports active mitochondrial participation in the transition. Heterologous complementation of the corresponding Saccharomyces cerevisiae null mutant with the PbCOX9 gene was successfully obtained. (C) 2008 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In rodents, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian system. The SCN is considerate the site of an endogenous biological clock because can to generate rhythm and to synchronize to the environmental cues (zeitgebers) and IGL has been related as one of the main areas that modulate the action of SCN. Both receive projections of ganglion cells of retina and this projection to SCN is called retinohypothalamic tract (RHT). Moreover, the IGL is connected with SCN through of geniculohypothalamic tract (GHT). In primates (include humans) was not still demonstrated the presence of a homologous structure to the IGL. It is believed that the pregeniculate nucleus (PGN) can be the answer, but nothing it was still proven. Trying to answer that question, the objective of our study is to do a comparative analysis among PGN and IGL through of techniques immunohystochemicals, neural tracers and FOS expression after dark pulses. For this, we used as experimental model a primate of the new world, the common marmoset (Callithrix jacchus). Ours results may contribute to the elucidation of this lacuna in the circadian system once that the IGL is responsible for the transmission of nonphotic information to SCN and participate in the integration between photic and nonphotic stimulus to adjust the function of the SCN. In this way to find a same structure in primates represent an important achieve in the understanding of the biological rhythms in those animals