936 resultados para brain network


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emotional and attentional functions are known to be distributed along ventral and dorsal networks in the brain, respectively. However, the interactions between these systems remain to be specified. The present study used event-related functional magnetic resonance imaging (fMRI) to investigate how attentional focus can modulate the neural activity elicited by scenes that vary in emotional content. In a visual oddball task, aversive and neutral scenes were presented intermittently among circles and squares. The squares were frequent standard events, whereas the other novel stimulus categories occurred rarely. One experimental group [N=10] was instructed to count the circles, whereas another group [N=12] counted the emotional scenes. A main effect of emotion was found in the amygdala (AMG) and ventral frontotemporal cortices. In these regions, activation was significantly greater for emotional than neutral stimuli but was invariant to attentional focus. A main effect of attentional focus was found in dorsal frontoparietal cortices, whose activity signaled task-relevant target events irrespective of emotional content. The only brain region that was sensitive to both emotion and attentional focus was the anterior cingulate gyrus (ACG). When circles were task-relevant, the ACG responded equally to circle targets and distracting emotional scenes. The ACG response to emotional scenes increased when they were task-relevant, and the response to circles concomitantly decreased. These findings support and extend prominent network theories of emotion-attention interactions that highlight the integrative role played by the anterior cingulate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, a number of investigators have examined the neural loci of psychological processes enabling the control of visual spatial attention using cued-attention paradigms in combination with event-related functional magnetic resonance imaging. Findings from these studies have provided strong evidence for the involvement of a fronto-parietal network in attentional control. In the present study, we build upon this previous work to further investigate these attentional control systems. In particular, we employed additional controls for nonattentional sensory and interpretative aspects of cue processing to determine whether distinct regions in the fronto-parietal network are involved in different aspects of cue processing, such as cue-symbol interpretation and attentional orienting. In addition, we used shorter cue-target intervals that were closer to those used in the behavioral and event-related potential cueing literatures. Twenty participants performed a cued spatial attention task while brain activity was recorded with functional magnetic resonance imaging. We found functional specialization for different aspects of cue processing in the lateral and medial subregions of the frontal and parietal cortex. In particular, the medial subregions were more specific to the orienting of visual spatial attention, while the lateral subregions were associated with more general aspects of cue processing, such as cue-symbol interpretation. Additional cue-related effects included differential activations in midline frontal regions and pretarget enhancements in the thalamus and early visual cortical areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls movement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional neuroimaging studies of episodic memory retrieval generally measure brain activity while participants remember items encountered in the laboratory ("controlled laboratory condition") or events from their own life ("open autobiographical condition"). Differences in activation between these conditions may reflect differences in retrieval processes, memory remoteness, emotional content, retrieval success, self-referential processing, visual/spatial memory, and recollection. To clarify the nature of these differences, a functional MRI study was conducted using a novel "photo paradigm," which allows greater control over the autobiographical condition, including a measure of retrieval accuracy. Undergraduate students took photos in specified campus locations ("controlled autobiographical condition"), viewed in the laboratory similar photos taken by other participants (controlled laboratory condition), and were then scanned while recognizing the two kinds of photos. Both conditions activated a common episodic memory network that included medial temporal and prefrontal regions. Compared with the controlled laboratory condition, the controlled autobiographical condition elicited greater activity in regions associated with self-referential processing (medial prefrontal cortex), visual/spatial memory (visual and parahippocampal regions), and recollection (hippocampus). The photo paradigm provides a way of investigating the functional neuroanatomy of real-life episodic memory under rigorous experimental control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous neural recordings taken from multiple areas of the rodent brain are garnering growing interest due to the insight they can provide about spatially distributed neural circuitry. The promise of such recordings has inspired great progress in methods for surgically implanting large numbers of metal electrodes into intact rodent brains. However, methods for localizing the precise location of these electrodes have remained severely lacking. Traditional histological techniques that require slicing and staining of physical brain tissue are cumbersome, and become increasingly impractical as the number of implanted electrodes increases. Here we solve these problems by describing a method that registers 3-D computerized tomography (CT) images of intact rat brains implanted with metal electrode bundles to a Magnetic Resonance Imaging Histology (MRH) Atlas. Our method allows accurate visualization of each electrode bundle's trajectory and location without removing the electrodes from the brain or surgically implanting external markers. In addition, unlike physical brain slices, once the 3D images of the electrode bundles and the MRH atlas are registered, it is possible to verify electrode placements from many angles by "re-slicing" the images along different planes of view. Further, our method can be fully automated and easily scaled to applications with large numbers of specimens. Our digital imaging approach to efficiently localizing metal electrodes offers a substantial addition to currently available methods, which, in turn, may help accelerate the rate at which insights are gleaned from rodent network neuroscience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MOTIVATION: Although many network inference algorithms have been presented in the bioinformatics literature, no suitable approach has been formulated for evaluating their effectiveness at recovering models of complex biological systems from limited data. To overcome this limitation, we propose an approach to evaluate network inference algorithms according to their ability to recover a complex functional network from biologically reasonable simulated data. RESULTS: We designed a simulator to generate data representing a complex biological system at multiple levels of organization: behaviour, neural anatomy, brain electrophysiology, and gene expression of songbirds. About 90% of the simulated variables are unregulated by other variables in the system and are included simply as distracters. We sampled the simulated data at intervals as one would sample from a biological system in practice, and then used the sampled data to evaluate the effectiveness of an algorithm we developed for functional network inference. We found that our algorithm is highly effective at recovering the functional network structure of the simulated system-including the irrelevance of unregulated variables-from sampled data alone. To assess the reproducibility of these results, we tested our inference algorithm on 50 separately simulated sets of data and it consistently recovered almost perfectly the complex functional network structure underlying the simulated data. To our knowledge, this is the first approach for evaluating the effectiveness of functional network inference algorithms at recovering models from limited data. Our simulation approach also enables researchers a priori to design experiments and data-collection protocols that are amenable to functional network inference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As we look around a scene, we perceive it as continuous and stable even though each saccadic eye movement changes the visual input to the retinas. How the brain achieves this perceptual stabilization is unknown, but a major hypothesis is that it relies on presaccadic remapping, a process in which neurons shift their visual sensitivity to a new location in the scene just before each saccade. This hypothesis is difficult to test in vivo because complete, selective inactivation of remapping is currently intractable. We tested it in silico with a hierarchical, sheet-based neural network model of the visual and oculomotor system. The model generated saccadic commands to move a video camera abruptly. Visual input from the camera and internal copies of the saccadic movement commands, or corollary discharge, converged at a map-level simulation of the frontal eye field (FEF), a primate brain area known to receive such inputs. FEF output was combined with eye position signals to yield a suitable coordinate frame for guiding arm movements of a robot. Our operational definition of perceptual stability was "useful stability,” quantified as continuously accurate pointing to a visual object despite camera saccades. During training, the emergence of useful stability was correlated tightly with the emergence of presaccadic remapping in the FEF. Remapping depended on corollary discharge but its timing was synchronized to the updating of eye position. When coupled to predictive eye position signals, remapping served to stabilize the target representation for continuously accurate pointing. Graded inactivations of pathways in the model replicated, and helped to interpret, previous in vivo experiments. The results support the hypothesis that visual stability requires presaccadic remapping, provide explanations for the function and timing of remapping, and offer testable hypotheses for in vivo studies. We conclude that remapping allows for seamless coordinate frame transformations and quick actions despite visual afferent lags. With visual remapping in place for behavior, it may be exploited for perceptual continuity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activity of the immediate early gene c-fos was compared across hemispheres in rats with unilateral anterior thalamic lesions. Fos protein was quantified after rats performed a spatial working memory test in the radial-arm maze, a task that is sensitive to bilateral lesions of the anterior thalamic nuclei. Unilateral anterior thalamic lesions produced evidence of a widespread hippocampal hypoactivity, as there were significant reductions in Fos counts in a range of regions within the ipsilateral hippocampal formation (rostral CA1, rostral dentate gyrus, 'dorsal' hippocampus, presubiculum and postsubiculum). A decrease in Fos levels was also found in the rostral and caudal retrosplenial cortex but not in the parahippocampal cortices or anterior cingulate cortices. The Fos changes seem most closely linked to sites that are also required for successful task performance, supporting the notion that the anterior thalamus, retrosplenial cortex and hippocampus form key components of an interdependent neuronal network involved in spatial mnemonic processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Functional connectivity magnetic resonance imaging technique has revealed the importance of distributed network structures in higher cognitive processes in the human brain. The hippocampus has a key role in a distributed network supporting memory encoding and retrieval. Hippocampal dysfunction is a recurrent finding in memory disorders of aging such as amnestic mild cognitive impairment (aMCI) in which learning- and memory-related cognitive abilities are the predominant impairment. The functional connectivity method provides a novel approach in our attempts to better understand the changes occurring in this structure in aMCI patients. METHODS: Functional connectivity analysis was used to examine episodic memory retrieval networks in vivo in twenty 28 aMCI patients and 23 well-matched control subjects, specifically between the hippocampal structures and other brain regions. RESULTS: Compared with control subjects, aMCI patients showed significantly lower hippocampus functional connectivity in a network involving prefrontal lobe, temporal lobe, parietal lobe, and cerebellum, and higher functional connectivity to more diffuse areas of the brain than normal aging control subjects. In addition, those regions associated with increased functional connectivity with the hippocampus demonstrated a significantly negative correlation to episodic memory performance. CONCLUSIONS: aMCI patients displayed altered patterns of functional connectivity during memory retrieval. The degree of this disturbance appears to be related to level of impairment of processes involved in memory function. Because aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), these early changes in functional connectivity involving the hippocampus may yield important new data to predict whether a patient will eventually develop AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Healing algorithms play a crucial part in distributed peer-to-peer networks where failures occur continuously and frequently. Whereas there are approaches for robustness that rely largely on built-in redundancy, we adopt a responsive approach that is more akin to that of biological networks e.g. the brain. The general goal of self-healing distributed graphs is to maintain certain network properties while recovering from failure quickly and making bounded alterations locally. Several self-healing algorithms have been suggested in the recent literature [IPDPS'08, PODC'08, PODC'09, PODC'11]; they heal various network properties while fulfilling competing requirements such as having low degree increase while maintaining connectivity, expansion and low stretch of the network. In this work, we augment the previous algorithms by adding the notion of edge-preserving self-healing which requires the healing algorithm to not delete any edges originally present or adversarialy inserted. This reflects the cost of adding additional edges but more importantly it immediately follows that edge preservation helps maintain any subgraph induced property that is monotonic, in particular important properties such as graph and subgraph densities. Density is an important network property and in certain distributed networks, maintaining it preserves high connectivity among certain subgraphs and backbones. We introduce a general model of self-healing, and introduce xheal+, an edge-preserving version of xheal[PODC'11]. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using fMRI, we conducted two types of property generation task that involved language switching, with early bilingual speakers of Korean and Chinese. The first is a more conventional task in which a single language (L1 or L2) was used within each trial, but switched randomly from trial to trial. The other consists of a novel experimental design where language switching happens within each trial, alternating in the direction of the L1/L2 translation required. Our findings support a recently introduced cognitive model, the 'hodological' view of language switching proposed by Moritz-Gasser and Duffau. The nodes of a distributed neural network that this model proposes are consistent with the informative regions that we extracted in this study, using both GLM methods and Multivariate Pattern Analyses: the supplementary motor area, caudate, supramarginal gyrus and fusiform gyrus and other cortical areas. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Communication and cooperation between billions of neurons underlie the power of the brain. How do complex functions of the brain arise from its cellular constituents? How do groups of neurons self-organize into patterns of activity? These are crucial questions in neuroscience. In order to answer them, it is necessary to have solid theoretical understanding of how single neurons communicate at the microscopic level, and how cooperative activity emerges. In this thesis we aim to understand how complex collective phenomena can arise in a simple model of neuronal networks. We use a model with balanced excitation and inhibition and complex network architecture, and we develop analytical and numerical methods for describing its neuronal dynamics. We study how interaction between neurons generates various collective phenomena, such as spontaneous appearance of network oscillations and seizures, and early warnings of these transitions in neuronal networks. Within our model, we show that phase transitions separate various dynamical regimes, and we investigate the corresponding bifurcations and critical phenomena. It permits us to suggest a qualitative explanation of the Berger effect, and to investigate phenomena such as avalanches, band-pass filter, and stochastic resonance. The role of modular structure in the detection of weak signals is also discussed. Moreover, we find nonlinear excitations that can describe paroxysmal spikes observed in electroencephalograms from epileptic brains. It allows us to propose a method to predict epileptic seizures. Memory and learning are key functions of the brain. There are evidences that these processes result from dynamical changes in the structure of the brain. At the microscopic level, synaptic connections are plastic and are modified according to the dynamics of neurons. Thus, we generalize our cortical model to take into account synaptic plasticity and we show that the repertoire of dynamical regimes becomes richer. In particular, we find mixed-mode oscillations and a chaotic regime in neuronal network dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sound localization can be defined as the ability to identify the position of an input sound source and is considered a powerful aspect of mammalian perception. For low frequency sounds, i.e., in the range 270 Hz-1.5 KHz, the mammalian auditory pathway achieves this by extracting the Interaural Time Difference between sound signals being received by the left and right ear. This processing is performed in a region of the brain known as the Medial Superior Olive (MSO). This paper presents a Spiking Neural Network (SNN) based model of the MSO. The network model is trained using the Spike Timing Dependent Plasticity learning rule using experimentally observed Head Related Transfer Function data in an adult domestic cat. The results presented demonstrate how the proposed SNN model is able to perform sound localization with an accuracy of 91.82% when an error tolerance of +/-10 degrees is used. For angular resolutions down to 2.5 degrees , it will be demonstrated how software based simulations of the model incur significant computation times. The paper thus also addresses preliminary implementation on a Field Programmable Gate Array based hardware platform to accelerate system performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most biologically-inspired artificial neurons are those of the third generation, and are termed spiking neurons, as individual pulses or spikes are the means by which stimuli are communicated. In essence, a spike is a short-term change in electrical potential and is the basis of communication between biological neurons. Unlike previous generations of artificial neurons, spiking neurons operate in the temporal domain, and exploit time as a resource in their computation. In 1952, Alan Lloyd Hodgkin and Andrew Huxley produced the first model of a spiking neuron; their model describes the complex electro-chemical process that enables spikes to propagate through, and hence be communicated by, spiking neurons. Since this time, improvements in experimental procedures in neurobiology, particularly with in vivo experiments, have provided an increasingly more complex understanding of biological neurons. For example, it is now well-understood that the propagation of spikes between neurons requires neurotransmitter, which is typically of limited supply. When the supply is exhausted neurons become unresponsive. The morphology of neurons, number of receptor sites, amongst many other factors, means that neurons consume the supply of neurotransmitter at different rates. This in turn produces variations over time in the responsiveness of neurons, yielding various computational capabilities. Such improvements in the understanding of the biological neuron have culminated in a wide range of different neuron models, ranging from the computationally efficient to the biologically realistic. These models enable the modeling of neural circuits found in the brain.