904 resultados para bounds
Resumo:
Let A and B be nonsingular M-matrices. A lower bound on the minimum eigenvalue q(B circle A(-1)) for the Hadamard product of A(-1) and B, and a lower bound on the minimum eigenvalue q(A star B) for the Fan product of A and B are given. In addition, an upper bound on the spectral radius rho(A circle B) of nonnegative matrices A and B is also obtained. These bounds improve several existing results in some cases and the estimating formulas are easier to calculate for they are only depending on the entries of matrices A and B. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
POMDP algorithms have made significant progress in recent years by allowing practitioners to find good solutions to increasingly large problems. Most approaches (including point-based and policy iteration techniques) operate by refining a lower bound of the optimal value function. Several approaches (e.g., HSVI2, SARSOP, grid-based approaches and online forward search) also refine an upper bound. However, approximating the optimal value function by an upper bound is computationally expensive and therefore tightness is often sacrificed to improve efficiency (e.g., sawtooth approximation). In this paper, we describe a new approach to efficiently compute tighter bounds by i) conducting a prioritized breadth first search over the reachable beliefs, ii) propagating upper bound improvements with an augmented POMDP and iii) using exact linear programming (instead of the sawtooth approximation) for upper bound interpolation. As a result, we can represent the bounds more compactly and significantly reduce the gap between upper and lower bounds on several benchmark problems. Copyright © 2011, Association for the Advancement of Artificial Intelligence. All rights reserved.
Resumo:
This paper presents new methods for computing the step sizes of the subband-adaptive iterative shrinkage-thresholding algorithms proposed by Bayram & Selesnick and Vonesch & Unser. The method yields tighter wavelet-domain bounds of the system matrix, thus leading to improved convergence speeds. It is directly applicable to non-redundant wavelet bases, and we also adapt it for cases of redundant frames. It turns out that the simplest and most intuitive setting for the step sizes that ignores subband aliasing is often satisfactory in practice. We show that our methods can be used to advantage with reweighted least squares penalty functions as well as L1 penalties. We emphasize that the algorithms presented here are suitable for performing inverse filtering on very large datasets, including 3D data, since inversions are applied only to diagonal matrices and fast transforms are used to achieve all matrix-vector products.