988 resultados para boron nitride (BN) nanodisks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poolton, Nigel; Towlson, B.M.; Hamilton, B.; Evans, D.A., (2006) 'Synchrotron-laser interactions in hexagonal boron nitride: an examination of charge trapping dynamics at the boron K-edge', New Journal of Physics 8 pp.76 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the enhancement of the thermal transport properties of nanocomposite materials containing hexagonal boron nitride in poly (vinyl alcohol)through room-temperature atmospheric pressure direct-current microplasma processing. Results show that the microplasma treatment leads to exfoliation of the hexagonal boron nitride in isopropyl alcohol, reducing the number of stacks from >30to a few or single layers. The thermal diffusivity of the resulting nanocomposites reaches 8.5 mm2 s-1, 50 times greater than blank poly (vinyl alcohol) and twice that ofnanocomposites containing non-plasma treated boron nitride nanosheets. From TEM analysis, we observe much less aggregation of the nanosheets after plasma processing along with indications of an amorphous carbon interfacial layer which may contribute to stable dispersion of boron nitride nanosheets in the resulting plasma treated colloids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a simple and effective approach for growing large-scale, high-density, and well-patterned conical boron nitride nanorods. A catalyst layer of Fe(NO3)3 was patterned on a silicon substrate by using a copper grid as a mask. The nanorods were grown via annealing milled boron carbide powders at 1300 °C in a flow of nitrogen gas. The as-grown nanorods exhibit uniform morphology and the catalyst pattern precisely defines the position of nanorod deposition. Cathodoluminescence (CL) spectra of the nanorods show two broad emission bands centered at 3.75 and 1.85 eV. Panchromatic CL images reveal clear patterned structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the electron field-emission (FE) characteristics of conical boron nitride nanorods grown on a (1 0 0) n-type silicon substrate. The emission current can be up to ~60 µA at an applied voltage of ~3 kV. Two distinct slopes are evident in the Fowler–Nordheim (FN) plot. The FE characteristics can be explained using a site-related tunnelling-controlled mechanism. The occurrence of two FN slopes is attributed to the switchover from tip emission to side emission, which results from the differences in interface barrier, geometry, as well as the total emission area of the two emission interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-yield multiwalled boron nitride (BN) nanotubes have been produced using a ball milling-annealing method. The BN nanotubes with a diameter less than 10 nm and a well-crystallized multiwalled structure were formed via an in situ nitriding reaction. The systematic investigation of the formation process at different annealing temperatures and for different times suggested that the formation of the unique multiwalled structure was attributed by a two-dimensional growth of the BN phase and a nonmetal catalytic growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ab initio calculations were conducted to investigate the electronic structures and magnetic properties of fluorinated boron nitride nanotube (F-BNNT). It was found that the chemisorption of F atoms on the B atoms of BNNT can induce spontaneous magnetization, whereas no magnetism can be produced when the B and N atoms are equally fluorinated. This provides a different approach to tune the magnetic properties of BNNTs as well as a synthetic route toward metal-free magnetic materials.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bandgap of boron nitride nanotubes (BNNTs) is generally considered to be independent on tube radius and chirality. However, we have observed that the bandgaps of BNNTs do depend on the tube size. Photoluminescence excitation spectroscopy with variable photon energies in vacuum ultraviolet (VUV) range revealed that the bandgap becomes smaller when the tube diameter decreases. This is consistent with red-shifted luminescent emissions. The strong interactions between excitons and phonons are possibly responsible for the bandgap narrowing as the function of nanotube size. 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report that ammonium oleate surfactants can help the dispersion of multiwalled boron nitride nanotubes (BNNTs) in water to form a BNNT solution stable for several months, which was due to the non-covalent functionalization of nanotube surfaces. Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence (PL) analysis with synchrotron radiation source revealed that this BNNT aqueous solution preserves the intrinsic optical properties of BNNTs. © 2009 Elsevier Ltd. All rights reserved.