998 resultados para bone phosphate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat-treated animal bone char (ABC) has not previously been evaluated for its potential as a phosphorus (P) fertilizer. ABC, Gafsa phosphate rock (GPR) and triple superphosphate fertilizer (TSP) were incubated in 12 soils. Dissolved-P was assessed by extraction with NaOH and bioavailability with the Olsen extractant. The rate of P dissolution from ABC was described almost equally well by the Elovich and Power equations. After 145 days, the fraction of P dissolved ranged from 0 to 73% and to 56% for ABC and GPR, respectively. The most important soil properties determining P dissolution from ABC were pH and P sorption. P dissolution was not significant at soil pH > 6.1 (ABC) and > 5 (GPR) and the lower the pH, the greater the Dissolved-P. Dissolved-P also correlated positively and significantly with inorganic P sorption, measured by the Freundlich isotherm and the P sorption index of Bache and Williams (1971). Soil pH and P sorption index could be combined in multiple regression equations that use readily measured soil properties to predict the potential for ABC dissolution in a soil. Dissolution of P from GPR correlated with soil pH and exchangeable acidity. In comparison with GPR, ABC was a better source of available P, assessed by Olsen-P. In most soils, ABC increased Olsen-P immediately after application, including soils of relatively high pH in which GPR was ineffective. ABC is a P fertilizer of solubility intermediate between GPR and TSP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used high energy transfer (HET) inelastic neutron scattering spectroscopy to measure the vibrational modes in the spectra of hydroxyapatite, bone and brushite to confirm our earlier work that only a fraction of the hydroxyl groups in bone mineral are substituted. The HET spectra are better observed due to the higher scattering cross section of hydrogen compared with the other elements in the calcium phosphate compounds. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used high energy transfer (HET) inelastic neutron scattering spectroscopy to measure the vibrational modes in the spectra of hydroxyapatite, bone and brushite to confirm our earlier work that only a fraction of the hydroxyl groups in bone mineral are substituted. The HET spectra are better observed due to the higher scattering cross section of hydrogen compared with the other elements in the calcium phosphate compounds. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been suggested that sources of P could be used to remediate metal-contaminated soil. The toxicity of four potential P sources, potassium hydrogen phosphate (PHP), triple superphosphate (TSP), rock phosphate (RP) and raw bone meal (RBM) to Eisenia fetida was determined. The concentration of P that is statistically likely to kill 50% of the population (LC50) for PHP, TSP and RBM was determined in OECD acute toxicity tests. 14 day LC50s expressed as bulk P concentration lay in the range 3319–4272 mg kg−1 for PHP, 3107–3590 mg kg−1 for TSP and 1782–2196 mg kg−1 for RBM (ranges present the 95% confidence intervals). For PHP and TSP mortality was significantly impacted by the electrical conductivity of the treated soils. No consistent relationship existed between mortality and electrical conductivity, soil pH and available (Olsen) P across the PHP, TSP and RBM amendment types. In RP toxicity tests mortality was low and it was not possible to determine a LC50 value. Incineration of bone meal at temperatures between 200 and 300 ◦C, pre-washing the bone meal, co-amendment with 5% green waste compost and delaying introduction of earthworms after bone meal amendments by 21 days or more led to significant reductions in the bone meal toxicity. These results are consistent with the toxicity being associated with the release and/or degradation of a soluble organic component present in raw bone meal. Bone meal can be used as an earthworm-friendly remedial amendment in metal-contaminated soils but initial additions may have a negative effect on any earthworms surviving in the contaminated soil before the organic component in the bone meal degrades in the soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to obtain membrane-bound alkaline phosphatase from osteoblastic-like cells of human alveolar bone. Cells were obtained by enzymatic digestion and maintained in primary culture in osteogenic medium until subconfluence. First passage cells were cultured in the same medium and at 7, 14, and 21 days, total protein content, collagen content, and alkaline phosphatase activity were evaluated. Bone-like nodule formation was evaluated at 21 days. Cells in primary culture at day 14 were washed with Tris-HCl buffer, and used to extract the membrane-bound alkaline phosphatase. Cells expressed osteoblastic phenotype. The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10.0. This enzyme also hydrolyzes ATP, ADP, fructose-1-phosphate, fructose-6-phosphate, pyrophosphate and beta-glycerophosphate. PNPPase activity was reduced by typical inhibitors of alkaline phosphatase. SDS-PAGE of membrane fraction showed a single band with activity of similar to 120 kDa that could be solubilized by phospholipase C or Polidocanol. (c) 2007 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells from rat bone marrow exhibit the proliferation-differentiation sequence of osteoblasts, form mineralized extracellular matrix in vitro and release alkaline phosphatase into the medium. Membrane-bound alkaline phosphatase was obtained by method that is easy to reproduce, simpler and fast when compared with the method used to obtain the enzyme from rat osseous plate. The membrane-bound alkaline phosphatase from cultures of rat bone marrow cells has a MWr of about 120 kDa and specific PNPP activity of 1200 U/tng. The ecto-enzyme is anchored to the plasma membrane by the GPI anchor and can be released by PIPLC (selective treatment) or polidocanol (0.2 mg/mL protein and 1% (w/v) detergent). The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10. This fraction hydrolyzes ATP (240 U/mg), ADP (350 U/ mg), glucose 1-phosphate (1100 U/mg), glucose 6-phosphate (340 Wing), fructose 6-phosphate (460 U/mg), pyrophosphate (330 U/mg) and (3glycerophosphate (600 U/mg). Cooperative effects were observed for the hydrolysis of PPi and beta-glycerophosphate. PNPPase activity was inhibited by 0.1 mM vanadate (46%), 0.1 mM ZnCl2 (68%), 1 mM levamisole (66%), 1 mM arsenate (44%), 10 mM phosphate (21%) and 1 mM theophylline (72%). We report the biochemical characterization of membrane-bound alkaline phosphatase obtained from rat bone marrow cells cultures, using a method that is simple, rapid and easy to reproduce. Its properties are compared with those of rat osseous plate enzyme and revealed that the alkaline phosphatase obtained has some kinetics and structural behaviors with higher levels of enzymatic activity, facilitating the comprehension of the mineralization process and its function. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose was to evaluate the cytotoxicity of two novel formulations (alpha and beta) of calcium phosphate cements. Positive control, represented by a commercial hydroxyapatite cement, and negative control were included for comparative purposes. A continuous lineage of fibroblastic cells was used, and the effect of the tested materials on both cell proliferation and viability was assessed by counting cell number on hemocytometer and by the trypan blue exclusion test, respectively. Study design attempted to simulate clinical use by allowing direct and indirect contact of cells and cements. Results were analyzed by the Kruskal-Wallis test and indicated that the beta formulation was extremely cytotoxic (P < 0.001), because this material induced the greatest reduction on cell proliferation and viability. The alpha formulation behaved similarly to the positive control regarding its effect on cell proliferation and viability. Thus, it is concluded that alpha formulation has promise for further evaluation of its behavior in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to assess vascular endothelial growth factor (VEGF) expression and microvessel density (MVD) in maxillary sinus augmentation with autogenous bone and different graft materials for evaluating their angiogenic potential.Biopsies were harvested 10 months after sinus augmentation with a combination of autogenous bone and different graft materials: hydroxyapatite (HA, n = 6 patients), demineralized freeze-dried bone allograft (DFDBA, n = 5 patients), calcium phosphate (CP, n = 5 patients), Ricinus communis polymer (n = 5 patients) and control group - autogenous bone only (n = 13 patients).In all the samples, higher intensities of VEGF expression were prevalent in the newly formed bone, while lower intensities of VEGF expression were predominant in the areas of mature bone. The highest intensity of VEGF expression in the newly formed bone was expressed by HA (P < 0.001) and CP in relation to control (P < 0.01) groups. The lowest intensities of VEGF expression in newly formed bone were shown by DFDBA and polymer groups (P < 0.05). When comparing the different grafting materials, higher MVD were found in the newly formed bone around control, HA and CP (P < 0.001).Various graft materials could be successfully used for sinus floor augmentation; however, the interactions between bone formation and angiogenesis remain to be fully characterized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured calcium phosphate (CaP) has been histologically and biomechanically proven to enhance osseointegration of implants; however, conventional techniques were not sufficiently sensitive to capture its biological effects fully. Here, we compared the conventional removal torque (RTQ) evaluation and gene expression in tissues around nanostructured CaP-coated implants, using real-time RT-PCR, with those of uncoated implants, in a rabbit model. At 2 wks, RTQ values were significantly higher, alkaline phosphatase (ALP) expression was significantly higher, and runt-related transcription factor 2 and tumor necrosis factor-alpha expressions were significantly lower in the coated than in the uncoated implants. This indicates that inflammatory responses were suppressed and osteoprogenitor activity increased around the CaP-coated surface. At 4 wks, although RTQ values did not significantly differ between the 2 groups, ALP and osteocalcin (OCN) were significantly up-regulated in the coated group, indicating progressive mineralization of the bone around the implant. Moreover, an osteoclast marker, adenosine triphosphatase, which indicates acidification of the resorption lacunae, was significantly higher for the coated implants, suggesting gradual resorption of the CaP coating. This study reveals detailed genetic responses to nanostructured CaP-coated implants and provides evidence that the effect of nanotopography is significant during the osseointegration cascade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructures on implant surfaces have been shown to enhance osseointegration; however, commonly used evaluation techniques are probably not sufficiently sensitive to fully determine the effects of this process. This study aimed to observe the osseointegration properties of nanostructured calcium phosphate (CaP)-coated implants, by using a combination of three-dimensional imaging and conventional histology. Titanium implants were coated with stable CaP nanoparticles using an immersion technique followed by heat treatment. Uncoated implants were used as the control. After topographical and chemical characterizations, implants were inserted into the rabbit femur. After 2 and 4 weeks, the samples were retrieved for micro-computed tomography and histomorphometric evaluation. Scanning electron microscopy evaluation indicated that the implant surface was modified at the nanoscale by CaP to obtain surface textured with rod-shaped structures. Relative to the control, the bone-to-implant contact for the CaP-coated implant was significantly higher at 4 weeks after the implant surgery. Further, corresponding 3-D images showed active bone formation surrounding the implant. 3-D quantification and 2-D histology demonstrated statistical correlation; moreover, 3-D quantification indicated a statistical decrease in bone density in the non-coated control implant group between 2 and 4 weeks after the surgery. The application of 3-D evaluation further clarified the temporal characteristics and biological reaction of implants in bone. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological response following subcutaneous and bone implantation of beta-wollastonite(beta-W)-doped alpha-tricalcium phosphate bioceramics in rats was evaluated. Tested materials were: tricalciurn phosphate (TCP), consisting of a mixture of alpha- and beta-polymorphs; TCP doped with 5 wt. % of beta-W (TCP5W), composed of alpha-TCP as only crystalline phase; and TCP doped with 15 wt. % of beta-W (TCP15), containing crystalline alpha-TCP and beta-W. Cylinders of 2x1 mm were implanted in tibiae and backs of adult male Rattus norvegicus, Holtzman rats. After 7, 30 and 120 days, animals were sacrificed and the tissue blocks containing the implants were excised, fixed and processed for histological examination. TCP, TCP5W and TCP15W implants were biocompatible but neither bioactive nor biodegradable in rat subcutaneous tissue. They were not osteoinductive in connective tissue either. However, in rat bone tissue beta-W-doped alpha-TCP implants (TCP5W and TCP15W) were bioactive, biodegradable and osteoconductive. The rates of biodegradation and new bone formation observed for TCP5W and TCP15W implants in rat bone tissue were greater than for non-doped TCP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)