984 resultados para bloom green alga Enteromorpha prolifera
Resumo:
The production of certain odorous metabolites is an undesirable attribute of cyanobacteria (blue-green algae) growth in aquaculture ponds [e.g., channel catfish(Ictalurus punctatus)] and in drinking water reservoirs. The most common odorous compounds encountered in catfish aquaculture are geosmin (trans-1,10-dimethyltrans-9-decalol) and 2-methylisoborneol(exo-1,2,7,7-tetramethylbicyclo[2.2.1]heptan-2-ol). These compounds are also frequently encountered worldwide in reservoirs and aqueducts used for municipal drinking water systems(Schrader et al. 2002). In this study, several algicides were evaluated using a rapid bioassay to determine their effectiveness in controlling the MIB-producing cyanobacterium Oscillatoria perornata from a west Mississippi catfish pond and the MIBproducing Pseudanabaena sp. (strain LW397) from Lake Whitehurst, Virginia, used as a city water supply reservoir. The cyanobacterium Oscillatoria agardhii , not a MIB-producer, and the green alga Selenastrum capricornutum , found in catfish ponds in the southeastern United States, were included in the bioassay to help determine potential broad-spectrum toxicity of the commercial products. (PDF has 3 pages.)
Resumo:
During the late 1980s to early 1990s a range of aquatic habitats in the central North Island of New Zealand were invaded by the filamentous green alga, water net Hydrodictyon reticulatum (Linn. Lagerheim). The alga caused significant economic and recreational impacts at major sites of infestation, but it was also associated with enhanced invertebrate numbers and was the likely cause of an improvement in the trout fishery. The causes of prolific growth of water net and the range of control options pursued are reviewed. The possible causes of its sudden decline in 1995 are considered, including physical factors, increase in grazer pressure, disease, and loss of genetic vigour.
Resumo:
Research into the production ecology of chalk streams using a large artificial recirculating stream is described. Physical chemical processes including calcium and inorganic phosphate levels, and exchange of gaseous carbon dioxide in both a simple closed system and a circulating system with gravel substrate have been monitored in both light and dark conditions. Further experiments were concerned with the seasonal changes in algal growth over the gravel substrate with constant water velocities and replenishment. The algal population, composed mainly of the diatoms Achnanthes minutissima, Meridion circulare, Nitzschia fonticola and Synedra ulna reached a peak in mid May and declined rapidly during June. Concentrations of phosphate phosphorus fell as the diatoms grew but was not thought to limit growth. Silicate concentrations followed the diatom cycle closely but never fell below 0.8 mg/l Si. It is possible that one of the nutrients may have been limiting the rate of growth due to steep diffusion gradients through the algal mat. In the last summer and autumn a hard calcareous crust composed of the green alga Gongrosira incrustans and the blue green alga Homeothrix varians , developed. The channel stream is compared with the natural conditions found in chalk streams.
Resumo:
The word ”Broads” is used to describe a series of relatively shallow lakes resulting from the flooding of medieval peat diggings. Broadland is essentially freshwater, but because the rivers have such low gradients the lower reaches are brackish. The influence of tide is particularly apparent on the River Yare; in Norwich 40 km from the sea there is a vertical movement of half a metre at spring tide. This study examines the problems that the broadlands are facing. The problems are basically the progressive loss of aquatic plants, in particular the macro- phytes, animal life, outbreaks of avian botulism, occasional fish kills due to a toxin produced by the blue-green alga Prymesium parvum and the emergence of very heavy algal blooms. The main factor for the deteriation of the Broaslands is the eutrophication resulting from enhanced nutrient inputs, in particular of nitrates and phosphates, from a variety of sources. The most important of these are sewage effluents, agricultural drainage, which includes fertilisers and nutrient rich effluents from piggeries and dairy un
Resumo:
During the course of chemical investigation of marine algae collected from Karachi coast of Arabian Sea, five sterols named as sarangosterol(1), 23-methyl cholesta-5, 25-dien-3ß-ol(2) from Endarachne binghamiae (brown alga), sargasterol(3) from Dictyota indica (brown alga), cholesterol(4) from Laurencia obtusa (red alga) and clerosterol(5) from Codium iyengarii (green alga) have been isolated. Their structures were elucidated with the help of spectroscopic means.
Resumo:
对汕头南澳岛潮间带海藻浒苔 (Enteromorpha prolifera)在低潮时干出状态下的光合作用进行了测定。结果表明 ,浒苔在干出状态下光合速率具有随脱水增加而下降的趋势 ,而呼吸速率在脱水过程中保持稳定。光合作用受目前大气 CO2 浓度水平 (36 0 μL·L-1)的限制 ,大气 CO2 浓度加倍使得浒苔暴露于空气过程中的光合作用增加 35%~ 52 % ,在严重脱水状态下 ,光合效率与羧化效率下降 ;而光补偿点、CO2 补偿点则增高。
Resumo:
Silver and bighead carp were stocked in a large pen to control the nuisance cyanobacterial blooms in Meiliang Bay of Lake Taihu. Plankton abundance and water quality were investigated about once a week from 9 May to 7 July in 2005. Biomass of both total crustacean zooplankton and cladocerans was significantly suppressed by the predation of pen-cultured fishes. There was a significant negative correlation between the N:P weight ratio and phytoplankton biomass. The size-selective predation by the two carps had no effect on the biomass of green alga Ulothrix sp. It may be attributed to the low fish stocking density (less than 40 g m(-3)) before June. When Microcystis dominated in the water of fish pen, the pen-cultured carps effectively suppressed the biomass of Microcystis, as indicated by the significant decline of chlorophyll a in the >38 mu m fractions of the fish pen. Based on the results of our experiment and previous other studies, we conclude that silver and bighead carp are two efficient biomanipulation tools to control cyanobacterial (Microcystis) blooms in the tropical/subtropical eutrophic waters. Moreover, we should maintain an enough stocking density for an effective control of phytoplankton biomass. (C) 2008 Elsevier B.V All rights reserved
Resumo:
In adaptation to new environments, organisms may accumulate mutations within encoding sequences to modify protein characteristics or acquire mutations within regulatory sequences to alter gene expression levels. With the development of antifreeze capability as the example, this study presents the evidence that change in gene expression level is probably the most important mechanism for adaptive evolution in a green alga Chlorella vulgaris. C. vulgaris NJ-7, an isolate from Antarctica, possesses an 18S rRNA sequence identical to that of a temperate isolate, SAG211-11b/UTEX259, but shows much higher freeze tolerance than the later isolate. The chromosomal DNA/cDNA of four antifreeze genes, namely hiC6, hiC12, rpl10a and hsp70, from the two isolates of C. vulgaris were cloned and sequenced, and very few variations of deduced amino acid sequences were found. In contrast, the transcription of hiC6, hiC12 and rpl10a was greatly intensified in NJ-7 compared to that in UTEX259, which is correlated to the significantly enhanced freeze tolerance of the Antarctica isolate. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Gel filtration chromatography, ultra-filtration, and solid-phase extraction silica gel clean-up were evaluated for their ability to remove microcystins selectively from extracts of cyanobacteria Spirulina samples after using the reversed-phase octadecylsilyl ODS cartridge for subsequent analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The reversed-phase ODS cartridge/silica gel combination were effective and the optimal wash and elution conditions were: H2O (wash), 20% methanol in water (wash), and 90% methanol in water (elution) for the reversed-phase ODS cartridge, followed by 80% methanol in water elution in the silica gel cartridge. The presence of microcystins in 36 kinds of cyanobacteria Spirulina health food samples obtained from various retail outlets in China were detected by LC-MS/MS, and 34 samples (94%) contained microcystins ranging from 2 to 163 ng g(-1) (mean=1427 ng g(-1)), which were significantly lower than microcystins present in blue green alga products previously reported. MC-RR-which contains two molecules of arginine (R)-(in 94.4% samples) was the predominant microcystin, followed by MC-LR-where L is leucine-(30.6%) and MC-YR-where Y is tyrose-(27.8%). The possible potential health risks from chronic exposure to microcystins from contaminated cyanobacteria Spirulina health food should not be ignored, even if the toxin concentrations were low. The method presented herein is proposed to detect microcystins present in commercial cyanobacteria Spirulina samples.
Resumo:
Photosynthetic activity during rehydration at four temperatures (5, 15, 25, 35 degrees C) was studied in a terrestrial, highly drought-tolerant cyanobacterium, Nostoc flagelliforme. At all the temperatures, the optimum quantum yield F-v/F-m increased rapidly within I It and then increased slowly during the process of rehydration. The increase in F-v/F-m at 25 and 35 degrees C was larger than that at 5 and 15 degrees C. In addition, the changes of initial intensity of fluorescence (F-0) and variable fluorescence (F-v) were more significant at 25 and 35 degrees C than those at 5 and 15 degrees C. Chlorophyll a content increased with the increase of temperature during the course of rehydration, with this being more pronounced at 25 and 35 degrees C. The photosynthetic rates at 25 and 35 degrees C were higher than those at 5 and 15 degrees C. Induction of chlorophyll fluorescence with sustained rewetting at 5 and 15 degrees C had two phases of transformation, whereas at 25 and 35 degrees C it had a third peak kinetic phase and showed typical chlorophyll fluorescence steps on rewetting for 24 h, representing a normal physiological state. A comparison of the chlorophyll fluorescence parameters, chlorophyll a content, and the chlorophyll fluorescence induction led to the conclusion that N. flagelliforme had a more rapid and complete recovery at 25 and 35 degrees C than that at 5 and 15 degrees C, although it could recover its photosynthetic activity at any of the four temperatures. (c) 2007 Published by Elsevier Ltd.
Resumo:
To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic 0, evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.
Resumo:
Phytoplankton assemblages in the subtrophical oligotrophic Lake Fuxian, the second deepest lake in China, were investigated monthly from September 2002 to August 2003. A total of 113 species belonging to seven phyla were identified, among them, a filamentous green alga, Mougeotia sp., dominated almost throughout the study period and comprised most of the total phytoplankton biomass. Mougeotia sp. has made a substantial development during the past decades: it was absent in 1957, only occasionally present in 1983, increased substantially in 1993, and became predominant in 2002-2003. It is likely that natural invasion of the Taihu Lake noodlefish (Neosalanx taihuensis) has led to a change of dominant herbivorous zooplankton from small to large calanoid, which has increased grazing pressure on small edible algae, and thus has indirectly favored the development of the inedible filamentous Mougeotia sp.
Resumo:
Extracellular polymeric substances (EPS) from four filamentous cyanobacteria Microcoleus vaginatus, Scytonema javanicum, Phormidium tenue and Nostoc sp. and a coccoid single-cell green alga Desmococcus olivaceus that had been separated from desert algal crusts of Tegger desert of China, were investigated for their chemical composition, structure,and physical properties. The EPS contained 7.5-50.3% protein (in polymers ranging from 14 to more than 200 kD, SDS-PAGE) and 16.2-46.5% carbohydrate (110-460 kD, GFC). 6-12 kinds of monosaccharides, including 2-O-methyl rhamnose, 2-O-methyl glucose, and N-acetyl glucosamine were found. The main carbohydrate chains from M. vaginatus and S. javanicum consisted mainly of equal proportion of Man, Gal and Glc, that from P. tenue consisted mainly of arabinose, glucose and rhamnose. Arabinose was present in pyranose form, mainly alpha-L 1 --> 3 linked, with branches on C4 of almost half of the units. Glucose was responsible for the terminal units, in addition of having some units as beta1 --> 3 and some as beta1 --> 4 linked. Rhamnose was mainly 1 --> 3 linked with branches on C2 on half of the units. The carbohydrate polymer from D. olivaceus was composed mainly of beta1 --> 4 linked xylose, galactose and glucose. The galactose part was present both in beta-pyranose and -furanose forms. Arabinose in alpha-L-furanose form was mainly present as 1 --> 2 and 1 --> 2, 5 linked units, rhamnose only as alpha 1 --> 3 and xylose as beta 1 --> 4. The backbone of the polysaccharide from Nostoc sp. was composed of beta-1 --> 4 linked xylose, galactose and glucose. Most of the glucose was branched on position C6, terminal glucose and 2-O-methyl glucose units are also present. The relationship between structure, physical properties and potential biological function is discussed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Four filamentous cyanobacteria, Microcoleus vaginatus, Phormidium tenue, Scytonema javanicum (Kutz.) and Nostoc sp., and a single-celled green alga, Desmococcus olivaceus, all isolated from Shapotou (Ningxia Hui Autonomous Region of China), were batch cultured and inoculated onto unconsolidated sand in greenhouse and field experiments. Their ability to reduce wind erosion in sands was quantified by using a wind tunnel laboratory. The major factors related to cohesion of algal crusts, such as biomass, species, species combinations, bioactivity, niche, growth phase of algae, moisture, thickness of the crusts, dust accretion (including dust content and manner of dust added) and other cryptogams (lichens, fungi and mosses) were studied. The best of the five species were M. vaginatus and P. tenue, while the best mix was a blend of 80% M. vaginatus and 5% each of P. tenue, S. javanicum, Nostoc sp. and D. olivaceus. The threshold friction velocity was significantly increased by the presence of all of the cyanobacterial species, while the threshold impact velocity was notably increased only by the filamentous species. Thick crusts were less easily eroded than thin crusts, while biomass was more effective than thickness. Dust was incorporated best into Microcoleus crust when added in small amounts over time, and appeared to increase growth of the cyanobacterium as well as strengthen the cohesion of the crust. Microbial crust cohesion was mainly attributed to algal aggregation, while lichens, fungi and mosses affected more the soil structure and physico-chemical properties.