996 resultados para bivariate probit model
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This research was conducted in August of 2011 in the villages of Kigisu and Rubona in rural Uganda while the author was serving as a community health volunteer with the U.S. Peace Corps. The study used the contingent valuation method (CVM) to estimate the populations’ willingness to pay (WTP) for the operation and maintenance of an improved water source. The survey was administered to 122 households out of 400 in the community, gathering demographic information, health and water behaviors, and using an iterative bidding process to estimate WTP. Households indicated a mean WTP of 286 Ugandan Shillings (UGX) per 20 liters for a public tap and 202 UGX per 20 liters from a private tap. The data were also analyzed using an ordered probit model. It was determined that the number of children in the home, and the distance from the existing source were the primary variables influencing households’ WTP.
Resumo:
Four papers, written in collaboration with the author’s graduate school advisor, are presented. In the first paper, uniform and non-uniform Berry-Esseen (BE) bounds on the convergence to normality of a general class of nonlinear statistics are provided; novel applications to specific statistics, including the non-central Student’s, Pearson’s, and the non-central Hotelling’s, are also stated. In the second paper, a BE bound on the rate of convergence of the F-statistic used in testing hypotheses from a general linear model is given. The third paper considers the asymptotic relative efficiency (ARE) between the Pearson, Spearman, and Kendall correlation statistics; conditions sufficient to ensure that the Spearman and Kendall statistics are equally (asymptotically) efficient are provided, and several models are considered which illustrate the use of such conditions. Lastly, the fourth paper proves that, in the bivariate normal model, the ARE between any of these correlation statistics possesses certain monotonicity properties; quadratic lower and upper bounds on the ARE are stated as direct applications of such monotonicity patterns.
Resumo:
With the recognition of the importance of evidence-based medicine, there is an emerging need for methods to systematically synthesize available data. Specifically, methods to provide accurate estimates of test characteristics for diagnostic tests are needed to help physicians make better clinical decisions. To provide more flexible approaches for meta-analysis of diagnostic tests, we developed three Bayesian generalized linear models. Two of these models, a bivariate normal and a binomial model, analyzed pairs of sensitivity and specificity values while incorporating the correlation between these two outcome variables. Noninformative independent uniform priors were used for the variance of sensitivity, specificity and correlation. We also applied an inverse Wishart prior to check the sensitivity of the results. The third model was a multinomial model where the test results were modeled as multinomial random variables. All three models can include specific imaging techniques as covariates in order to compare performance. Vague normal priors were assigned to the coefficients of the covariates. The computations were carried out using the 'Bayesian inference using Gibbs sampling' implementation of Markov chain Monte Carlo techniques. We investigated the properties of the three proposed models through extensive simulation studies. We also applied these models to a previously published meta-analysis dataset on cervical cancer as well as to an unpublished melanoma dataset. In general, our findings show that the point estimates of sensitivity and specificity were consistent among Bayesian and frequentist bivariate normal and binomial models. However, in the simulation studies, the estimates of the correlation coefficient from Bayesian bivariate models are not as good as those obtained from frequentist estimation regardless of which prior distribution was used for the covariance matrix. The Bayesian multinomial model consistently underestimated the sensitivity and specificity regardless of the sample size and correlation coefficient. In conclusion, the Bayesian bivariate binomial model provides the most flexible framework for future applications because of its following strengths: (1) it facilitates direct comparison between different tests; (2) it captures the variability in both sensitivity and specificity simultaneously as well as the intercorrelation between the two; and (3) it can be directly applied to sparse data without ad hoc correction. ^
Resumo:
El desarrollo de sistemas agrícolas sustentables es un desafío en el contexto de políticas e incentivos tendientes a la conservación de los recursos naturales, especialmente en zonas de secano. El presente estudio examina variables demográficas y productivas que influyen en la adopción de tecnologías de conservación de suelos en 90 pequeños productores del secano interior de Chile Central, en las comunas de Pencahue y Curepto. Se utilizó un modelo de regresión Probit, el cual asocia la adopción de las tecnologías con las variables: edad del agricultor, tamaño familiar, superficie predial y forma de tenencia de la tierra; presencia de: plantaciones forestales, invernaderos, aboneras, animales mayores en el predio; experiencia en comercialización del productor y participación en actividades de capacitación. El modelo seleccionado tiene un alto poder de predicción, llegando a clasificar correctamente un 92,2% de las observaciones. Los resultados econométricos muestran que la participación en actividades de extensión, la superficie predial, la presencia de plantaciones forestales y el uso de aboneras, influyen de manera positiva y significativa sobre la adopción de tecnologías conservacionistas. Resulta relevante el impacto de la capacitación sobre la adopción de tecnologías de alto grado de inversión, así como la incorporación de prácticas de conservación de bajo nivel de inversión como las aboneras.
Resumo:
In the long term, productivity and especially productivity growth are necessary conditions for the survival of a farm. This paper focuses on the technology choice of a dairy farm, i.e. the choice between a conventional and an automatic milking system. Its aim is to reveal the extent to which economic rationality explains investing in new technology. The adoption of robotics is further linked to farm productivity to show how capital-intensive technology has affected the overall productivity of milk production. The empirical analysis applies a probit model and an extended Cobb-Douglas-type production function to a Finnish farm-level dataset for the years 2000–10. The results show that very few economic factors on a dairy farm or in its economic environment can be identified to affect the switch to automatic milking. Existing machinery capital and investment allowances are among the significant factors. The results also indicate that the probability of investing in robotics responds elastically to a change in investment aids: an increase of 1% in aid would generate an increase of 2% in the probability of investing. Despite the presence of non-economic incentives, the switch to robotic milking is proven to promote productivity development on dairy farms. No productivity growth is observed on farms that keep conventional milking systems, whereas farms with robotic milking have a growth rate of 8.1% per year. The mean rate for farms that switch to robotic milking is 7.0% per year. The results show great progress in productivity growth, with the average of the sector at around 2% per year during the past two decades. In conclusion, investments in new technology as well as investment aids to boost investments are needed in low-productivity areas where investments in new technology still have great potential to increase productivity, and thus profitability and competitiveness, in the long run.
Resumo:
The purpose of this paper is to examine the determinants of a firm's strategy to invest in a conflict location. To the best of our knowledge, this has not been done before. We examine this using a standard model of international business, overlaid with the fundamental approach to corporate social responsibility. We start with the population of multinationals who have chosen to invest in low income countries with weak institutions. We then split this sample in order to distinguish between firms that have invested in conflict regions compared to those that have not. Our analysis then proceeds to explain the decision of those firms to invest in conflict locations using a simple Probit model. We find that countries with weaker institutions and less concern about corporate social responsibility (CSR) are more likely to invest in conflict regions. Finally, firms with more concentrated ownership are more likely to invest in such locations. © 2012 Elsevier Ltd.
Resumo:
Forward error correction (FEC) plays a vital role in coherent optical systems employing multi-level modulation. However, much of coding theory assumes that additive white Gaussian noise (AWGN) is dominant, whereas coherent optical systems have significant phase noise (PN) in addition to AWGN. This changes the error statistics and impacts FEC performance. In this paper, we propose a novel semianalytical method for dimensioning binary Bose-Chaudhuri-Hocquenghem (BCH) codes for systems with PN. Our method involves extracting statistics from pre-FEC bit error rate (BER) simulations. We use these statistics to parameterize a bivariate binomial model that describes the distribution of bit errors. In this way, we relate pre-FEC statistics to post-FEC BER and BCH codes. Our method is applicable to pre-FEC BER around 10-3 and any post-FEC BER. Using numerical simulations, we evaluate the accuracy of our approach for a target post-FEC BER of 10-5. Codes dimensioned with our bivariate binomial model meet the target within 0.2-dB signal-to-noise ratio.
Resumo:
Before and after its accession to the WTO in 2001, China has undergone a far-reaching investment liberalisation. As part of this, existing restrictions on foreign ownership structure and mandatory export and technology transfer requirements imposed on foreign firms have been lifted in a number of industries. Against this background we identify the causal effects of foreign acquisitions on export market entry and technology take-off and evaluate whether the level of foreign ownership plays a role in stimulating these changes. Using doubly robust propensity score reweighted bivariate probit regressions to control for the selection bias associated with firm level foreign acquisition incidences, we uncover strong but heterogeneous positive effects on export activity for all types of foreign ownership structure. We also find that minority foreign owned acquisition targets experience higher likelihood of R&D, providing evidence that joint ventures can contribute positively to China's "science and technology take-off".
Resumo:
The aim of this thesis is to identify the relationship between subjective well-being and economic insecurity for public and private sector workers in Ireland using the European Social Survey 2010-2012. Life satisfaction and job satisfaction are the indicators used to measure subjective well-being. Economic insecurity is approximated by regional unemployment rates and self-perceived job insecurity. Potential sample selection bias and endogeneity bias are accounted for. It is traditionally believed that public sector workers are relatively more protected against insecurity due to very institution of public sector employment. The institution of public sector employment is made up of stricter dismissal practices (Luechinger et al., 2010a) and less volatile employment (Freeman, 1987) where workers are subsequently less likely to be affected by business cycle downturns (Clark and Postal-Vinay, 2009). It is found in the literature that economic insecurity depresses the well-being of public sector workers to a lesser degree than private sector workers (Luechinger et al., 2010a; Artz and Kaya, 2014). These studies provide the rationale for this thesis in testing for similar relationships in an Irish context. Sample selection bias arises when a selection into a particular category is not random (Heckman, 1979). An example of this is non-random selection into public sector employment based on personal characteristics (Heckman, 1979; Luechinger et al., 2010b). If selection into public sector employment is not corrected for this can lead to biased and inconsistent estimators (Gujarati, 2009). Selection bias of public sector employment is corrected for by using a standard Two-Step Heckman Probit OLS estimation method. Following Luechinger et al. (2010b), the propensity for individuals to select into public sector employment is estimated by a binomial probit model with the inclusion of the additional regressor Irish citizenship. Job satisfaction is then estimated by Ordinary Least Squares (OLS) with the inclusion of a sample correction term similar as is done in Clark (1997). Endogeneity is where an independent variable included in the model is determined within in the context of the model (Chenhall and Moers, 2007). The econometric definition states that an endogenous independent variable is one that is correlated with the error term (Wooldridge, 2010). Endogeneity is expected to be present due to a simultaneous relationship between job insecurity and job satisfaction whereby both variables are jointly determined (Theodossiou and Vasileiou, 2007). Simultaneity, as an instigator of endogeneity, is corrected for using Instrumental Variables (IV) techniques. Limited Information Methods and Full Information Methods of estimation of simultaneous equations models are assed and compared. The general results show that job insecurity depresses the subjective well-being of all workers in both the public and private sectors in Ireland. The magnitude of this effect differs among sectoral workers. The subjective well-being of private sector workers is more adversely affected by job insecurity than the subjective well-being of public sector workers. This is observed in basic ordered probit estimations of both a life satisfaction equation and a job satisfaction equation. The marginal effects from the ordered probit estimation of a basic job satisfaction equation show that as job insecurity increases the probability of reporting a 9 on a 10-point job satisfaction scale significantly decreases by 3.4% for the whole sample of workers, 2.8% for public sector workers and 4.0% for private sector workers. Artz and Kaya (2014) explain that as a result of many austerity policies implemented to reduce government expenditure during the economic recession, workers in the public sector may for the first time face worsening perceptions of job security which can have significant implications for their well-being (Artz and Kaya, 2014). This can be observed in the marginal effects where job insecurity negatively impacts the well-being of public sector workers in Ireland. However, in accordance with Luechinger et al. (2010a) the results show that private sector workers are more adversely impacted by economic insecurity than public sector workers. This suggests that in a time of high economic volatility, the institution of public sector employment held and was able to protect workers against some of the well-being consequences of rising insecurity. In estimating the relationship between subjective well-being and economic insecurity advanced econometric issues arise. The results show that when selection bias is corrected for, any statistically significant relationship between job insecurity and job satisfaction disappears for public sector workers. Additionally, in order to correct for endogeneity bias the simultaneous equations model for job satisfaction and job insecurity is estimated by Limited Information and Full Information Methods. The results from two different estimators classified as Limited Information Methods support the general findings of this research. Moreover, the magnitude of the endogeneity-corrected estimates are twice as large as those not corrected for endogeneity bias which is similarly found in Geishecker (2010, 2012). As part of the analysis into the effect of economic insecurity on subjective well-being, the effects of other socioeconomic variables and work-related variables are examined for public and private sector workers in Ireland.
Resumo:
The impacts of climate change are considered to be strong in countries located in tropical Africa that depend on agriculture for their food, income and livelihood. Therefore, a better understanding of the local dimensions of adaptation strategies is essential to develop appropriate measures that will mitigate adverse consequences. Hence, this study was conducted to identify the most commonly used adaptation strategies that farm households practice among a set of options to withstand the effects of climate change and to identify factors that affect the choice of climate change adaptation strategies in the Central Rift Valley of Ethiopia. To address this objective, Multivariate Probit model was used. The results of the model indicated that the likelihood of households to adapt improved varieties of crops, adjust planting date, crop diversification and soil conservation practices were 58.73%, 57.72%, 35.61% and 41.15%, respectively. The Simulated Maximum Likelihood estimation of the Multivariate Probit model results suggested that there was positive and significant interdependence between household decisions to adapt crop diversification and using improved varieties of crops; and between adjusting planting date and using improved varieties of crops. The results also showed that there was a negative and significant relationship between household decisions to adapt crop diversification and soil conservation practices. The paper also recommended household, socioeconomic, institutional and plot characteristics that facilitate and impede the probability of choosing those adaptation strategies.
Resumo:
This paper presents a methodology to explore the impact on poverty of the public spending on education. The methodology consists of two approaches: Benefit Incidence Analysis (BIA) and behavioral approach. BIA considers the cost and use of the educational service, and the distribution of the benefits among groups of income. Regarding the behavioral approach, we use a Probit model of schooling attendance, in order to determinethe influence of public spending on the probability for thepoor to attend the school. As a complement, a measurement of targeting errors in the allocation of public spending is included in the methodology.
Resumo:
This dissertation proposes statistical methods to formulate, estimate and apply complex transportation models. Two main problems are part of the analyses conducted and presented in this dissertation. The first method solves an econometric problem and is concerned with the joint estimation of models that contain both discrete and continuous decision variables. The use of ordered models along with a regression is proposed and their effectiveness is evaluated with respect to unordered models. Procedure to calculate and optimize the log-likelihood functions of both discrete-continuous approaches are derived, and difficulties associated with the estimation of unordered models explained. Numerical approximation methods based on the Genz algortithm are implemented in order to solve the multidimensional integral associated with the unordered modeling structure. The problems deriving from the lack of smoothness of the probit model around the maximum of the log-likelihood function, which makes the optimization and the calculation of standard deviations very difficult, are carefully analyzed. A methodology to perform out-of-sample validation in the context of a joint model is proposed. Comprehensive numerical experiments have been conducted on both simulated and real data. In particular, the discrete-continuous models are estimated and applied to vehicle ownership and use models on data extracted from the 2009 National Household Travel Survey. The second part of this work offers a comprehensive statistical analysis of free-flow speed distribution; the method is applied to data collected on a sample of roads in Italy. A linear mixed model that includes speed quantiles in its predictors is estimated. Results show that there is no road effect in the analysis of free-flow speeds, which is particularly important for model transferability. A very general framework to predict random effects with few observations and incomplete access to model covariates is formulated and applied to predict the distribution of free-flow speed quantiles. The speed distribution of most road sections is successfully predicted; jack-knife estimates are calculated and used to explain why some sections are poorly predicted. Eventually, this work contributes to the literature in transportation modeling by proposing econometric model formulations for discrete-continuous variables, more efficient methods for the calculation of multivariate normal probabilities, and random effects models for free-flow speed estimation that takes into account the survey design. All methods are rigorously validated on both real and simulated data.
Resumo:
Mestrado em Desenvolvimento e Cooperação Internacional