999 resultados para biophysics
Resumo:
The Indian National Science Academy (INSA), New Delhi which is currently in its Platinum Jubilee year, has maintained its eminence and dignity all these years. The Fellowship of INSA is highly cherished. The Academy enjoys considerable prestige. This prestige needs to be converted into influence. INSA is in the process of setting up a Science Policy Study Cell. The Academy needs to strengthen its role as a think-tank in the service of the nation on science-related issues. INSA is also in the process of establishing an archive. We can understand the present and plan for the future only in the context of the past. Thirdly, we would like to establish an electronic hub of science information at INSA. We do not wish to solely hold large quantities of information. But we need to have links with all major depositories of science- related information in the country. This is in consonance with the general philosophy of an Academy. The Academy is not a major implementer or executor of policies and programmes. It is a catalyst and a beacon that guides.
Resumo:
Background: Phosphorylation by protein kinases is a common event in many cellular processes. Further, many kinases perform specialized roles and are regulated by non-kinase domains tethered to kinase domain. Perturbation in the regulation of kinases leads to malignancy. We have identified and analysed putative protein kinases encoded in the genome of chimpanzee which is a close evolutionary relative of human. Result: The shared core biology between chimpanzee and human is characterized by many orthologous protein kinases which are involved in conserved pathways. Domain architectures specific to chimp/human kinases have been observed. Chimp kinases with unique domain architectures are characterized by deletion of one or more non-kinase domains in the human kinases. Interestingly, counterparts of some of the multi-domain human kinases in chimp are characterized by identical domain architectures but with kinase-like non-kinase domain. Remarkably, out of 587 chimpanzee kinases no human orthologue with greater than 95% sequence identity could be identified for 160 kinases. Variations in chimpanzee kinases compared to human kinases are brought about also by differences in functions of domains tethered to the catalytic kinase domain. For example, the heterodimer forming PB1 domain related to the fold of ubiquitin/Ras-binding domain is seen uniquely tethered to PKC-like chimpanzee kinase. Conclusion: Though the chimpanzee and human are evolutionary very close, there are chimpanzee kinases with no close counterpart in the human suggesting differences in their functions. This analysis provides a direction for experimental analysis of human and chimpanzee protein kinases in order to enhance our understanding on their specific biological roles.
Resumo:
SHMT (serine hydoxymethyltransferase), a type I pyridoxal 5'-phosphate-dependent enzyme, catalyses the conversion of L-serine and THF (tetrahydrofolate) into glycine and 5,10-methylene THE SHMT also catalyses several THF-independent side reactions such as cleavage of P-hydroxy amino acids, trans-amination, racemization and decarboxylation. In the present study, the residues Asn(341), Tyr(60) and Phe(351), which are likely to influence THF binding, were mutated to alanine, alanine and glycine respectively, to elucidate the role of these residues in THF-dependent and -independent reactions catalysed by SHMT. The N341A and Y60A bsSHMT (Bacillus stearothermophilus SHMT) mutants were inactive for the THF-dependent activity, while the mutations had no effect on THF-independent activity. However, mutation of Phe(351) to glycine did not have any effect oil either of the activities. The crystal structures of the glycine binary complexes of the mutants showed that N341A bsSHMT forms an external aldimine as in bsSHMT, whereas Y60A and F351G bsSHMTs exist as a Mixture of internal/external aldimine and gem-diamine forms. Crystal structures of all of the three Mutants obtained in the presence of L-allo-threonine were similar to the respective glycine binary complexes. The structure of the ternary complex of F351G bsSHMT with glycine and FTHF (5-formyl THF) showed that the monoglutamate side chain of FTHF is ordered in both the subunits of the asymmetric unit, unlike in the wild-type bsSHMT. The present studies demonstrate that the residues Asn(341) and Tyr(60) are pivotal for the binding of THF/FTHF, whereas Phe(351) is responsible for the asymmetric binding of FTHF in the two subunits of the dimer.
Resumo:
Banana lectin (Banlec) is a homodimeric non-glycosylated protein. It exhibits the b-prism I structure. High-temperature molecular dynamics simulations have been utilized to monitor and understand early stages of thermally induced unfolding of Banlec. The present study elucidates the behavior of the dimeric protein at four different temperatures and compares the structural and conformational changes to that of the minimized crystal structure. The process of unfolding was monitored by following the radius of gyration, the rms deviation of each residue, change in relative solvent accessibility and the pattern of inter- and intra-subunit interactions. The overall study demonstrates that the Banlec dimer is a highly stable structure, and the stability is mostly contributed by interfacial interactions. It maintains its overall conformation during high-temperature (400–500 K) simulations, with only the unstructured loop regions acquiring greater momentum under such condition. Nevertheless, at still higher temperatures (600 K) the tertiary structure is gradually lost which later extends to loss of secondary structural elements. The pattern of hydrogen bonding within the subunit and at the interface across different stages has been analyzed and has provided rationale for its intrinsic high stability.
Resumo:
Background The genome of a wide variety of prokaryotes contains the luxS gene homologue, which encodes for the protein S-ribosylhomocysteinelyase (LuxS). This protein is responsible for the production of the quorum sensing molecule, AI-2 and has been implicated in a variety of functions such as flagellar motility, metabolic regulation, toxin production and even in pathogenicity. A high structural similarity is present in the LuxS structures determined from a few species. In this study, we have modelled the structures from several other species and have investigated their dimer interfaces. We have attempted to correlate the interface features of LuxS with the phenotypic nature of the organisms. Results The protein structure networks (PSN) are constructed and graph theoretical analysis is performed on the structures obtained from X-ray crystallography and on the modelled ones. The interfaces, which are known to contain the active site, are characterized from the PSNs of these homodimeric proteins. The key features presented by the protein interfaces are investigated for the classification of the proteins in relation to their function. From our analysis, structural interface motifs are identified for each class in our dataset, which showed distinctly different pattern at the interface of LuxS for the probiotics and some extremophiles. Our analysis also reveals potential sites of mutation and geometric patterns at the interface that was not evident from conventional sequence alignment studies. Conclusion The structure network approach employed in this study for the analysis of dimeric interfaces in LuxS has brought out certain structural details at the side-chain interaction level, which were elusive from the conventional structure comparison methods. The results from this study provide a better understanding of the relation between the luxS gene and its functional role in the prokaryotes. This study also makes it possible to explore the potential direction towards the design of inhibitors of LuxS and thus towards a wide range of antimicrobials.
Resumo:
The crystal structures of complexes of Mycobacterium tuberculosis pantothenate kinase with the following ligands have been determined: (i) citrate; (ii) the nonhydrolysable ATP analogue AMPPCP and pantothenate (the initiation complex); (iii) ADP and phosphopantothenate resulting from phosphorylation of pantothenate by ATP in the crystal (the end complex); (iv) ATP and ADP, each with half occupancy, resulting from a quick soak of crystals in ATP (the intermediate complex); (v) CoA; (vi) ADP prepared by soaking and cocrystallization, which turned out to have identical structures, and (vii) ADP and pantothenate. Solution studies on CoA binding and catalytic activity have also been carried out. Unlike in the case of the homologous Escherichia coli enzyme, AMPPCP and ADP occupy different, though overlapping, locations in the respective complexes; the same is true of pantothenate in the initiation complex and phosphopantothenate in the end complex. The binding site of MtPanK is substantially preformed, while that of EcPanK exhibits considerabl plasticity. The difference in the behaviour of the E. coli and M. tuberculosis enzymes could be explained in terms of changes in local structure resulting from substitutions. It is unusual for two homologous enzymes to exhibit such striking differences in action. Therefore, the results have to be treated with caution. However, the changes in the locations of ligands exhibited by M. tuberculosis pantothenate kinase are remarkable and novel.
Resumo:
Assembly intermediates of icosahedral viruses are usually transient and are difficult to identify. In the present investigation, site-specific and deletion mutants of the coat protein gene of physalis mottle tymovirus (PhMV) were used to delineate the role of specific amino acid residues in the assembly of the virus and to identify intermediates in this process. N-terminal 30, 34, 35 and 39 amino acid deletion and single C-terminal (N188) deletion mutant proteins of PhMV were expressed in Escherichia coli. Site-specific mutants H69A, C75A, W96A, D144N, D144N-T151A, K143E and N188A were also constructed and expressed. The mutant protein lacking 30 amino acid residues from the N terminus self-assembled to T = 3 particles in vivo while deletions of 34, 35 and 39 amino acid residues resulted in the mutant proteins that were insoluble. Interestingly, the coat protein (pR PhCP) expressed using pRSET B vector with an additional 41 amino acid residues at the N terminus also assembled into T = 3 particles that were more compact and had a smaller diameter. These results demonstrate that the amino-terminal segment is flexible and either the deletion or addition of amino acid residues at the N terminus does not affect T = 3 capsid assembly, in contrast, the deletion of even a single residue from the C terminus (PhN188 Delta 1) resulted in capsids that were unstable. These capsids disassembled to a discrete intermediate with a sedimentation coefficent of 19.4 S. However, the replacement of C-terminal asparagine 188 by alanine led to the formation of stable capsids. The C75A and D144N mutant proteins also assembled into capsids that were as stable as the pR PhCP, suggesting that C75A and D144 are not crucial for the T = 3 capsid assembly. pR PhW96A and pR PhD144N-T151A mutant proteins failed to form capsids and were present as heterogeneous aggregates. Interestingly, the pR PhK143E mutant protein behaved in a manner similar to the C-terminal deletion protein in forming unstable capsids. The intermediate with an s value of 19.4 S was the major assembly product of pR PhH69A mutant protein and could correspond to a 30mer. It is possible that the assembly or disassembly is arrested at a similar stage in pR PhN188 Delta 1, pR PhH69A and pR PhK143E mutant proteins.
Resumo:
Oxygen release accompanying oxidation of vanadyl by diperoxovanadate was suppressed on addition of NADH. The added NADH was rapidly oxidized, oxygen in the medium was consumed, and the reaction terminated on exhaustion of either NADH or vanadyl. The consumption of oxygen and disappearance of NADH needed small concentrations of diperoxovanadate to initiate and increased with increase in the concentration of vanadyl and NADH or decrease of pH. The products of the reaction were found to be NAD(+) from NADH and vanadate oligomers from vanadyl and oxygen. The reaction was insensitive to catalase and was not dependent on H2O2. The reaction was inhibited by superoxide dismutase, cytochrome c, EDTA, Mn2+, histidine, and DMPO, but not by hydroxyl radical scavengers such as ethanol and benzoate, The ESR spectrum of the reaction mixture showed the presence of the 1:2:2:1 quartet signal typical of a DMPO-OH adduct, but this was not modified by ethanol, This oxygen radical species, possibly of (OV)-O-. type derived from diperoxovanadate, is proposed to have a role in the reactions of oxygen release and NADH oxidation
Resumo:
New diacylglycerols (2-4) containing intramolecular disulfide linkages between pendant acyl chains were synthesized. Due to the differences in the location of disulfide units, the present method allows synthesis of macrocycles that vary in sizes. Copyright.
Resumo:
Background: Regulation of gene expression in Plasmodium falciparum (Pf) remains poorly understood. While over half the genes are estimated to be regulated at the transcriptional level, few regulatory motifs and transcription regulators have been found. Results: The study seeks to identify putative regulatory motifs in the upstream regions of 13 functional groups of genes expressed in the intraerythrocytic developmental cycle of Pf. Three motif-discovery programs were used for the purpose, and motifs were searched for only on the gene coding strand. Four motifs – the 'G-rich', the 'C-rich', the 'TGTG' and the 'CACA' motifs – were identified, and zero to all four of these occur in the 13 sets of upstream regions. The 'CACA motif' was absent in functional groups expressed during the ring to early trophozoite transition. For functional groups expressed in each transition, the motifs tended to be similar. Upstream motifs in some functional groups showed 'positional conservation' by occurring at similar positions relative to the translational start site (TLS); this increases their significance as regulatory motifs. In the ribonucleotide synthesis, mitochondrial, proteasome and organellar translation machinery genes, G-rich, C-rich, CACA and TGTG motifs, respectively, occur with striking positional conservation. In the organellar translation machinery group, G-rich motifs occur close to the TLS. The same motifs were sometimes identified for multiple functional groups; differences in location and abundance of the motifs appear to ensure different modes of action. Conclusion: The identification of positionally conserved over-represented upstream motifs throws light on putative regulatory elements for transcription in Pf.
Resumo:
Dimeric and monomeric forms of the enzyme triosephosphate isomerase (TIM) from Plasmodium falciparum (Pf) have been detected under conditions of nanoflow by electrospray mass spectrometry. The dimer (M = 55 663 Da) exhibits a narrow charge state distribution with intense peaks limited to values of 18(+) to 21(+), maximal intensity being observed for charge states 19(+) and 20(+). A monomeric species with a charge state distribution ranging from 11(+) to 16(+) is also observed, which may be assigned to folded dissociated subunits. Complete dimer dissociation results under normal electrospray condition. The effects of solution pH and source temperature have been investigated. The observation of four distinct charge state distributions which may be assigned to a dimer, folded monomer, partially folded monomer and unfolded monomer is reported. Circular dichromism and fluorescence studies of Pf TIM at low pH support the retention of substantial secondary and tertiary structures. Satellite peaks in mass spectra corresponding to hydrated species are also observed and isotope shift upon deuteration is demonstrated. The analysis of all available independent crystal structures of Pf TIM and TIMs from other organisms permits identification of structurally conserved water molecules. Hydration observed in the dimer and folded monomeric forms in the gas phase may correspond to these conserved sites.
Resumo:
To correlate the Raman frequencies of the amide I and III bands to beta-turn structures, three peptides shown to contain beta-turn structure by x-ray diffraction and NMR were examined. The compounds examined were tertiary (formula: see text). The amide I band of these compounds is seen at 1,668, 1,665, and 1,677 cm-1, and the amide III band appears at 1,267, 1,265, and 1,286 cm-1, respectively. Thus, it is concluded that the amide I band for type III beta-turn structure appears in the range between 1,665 and 1,677 cm-1 and the amide III band between 1,265 and 1,286 cm-1.
Resumo:
From X-ray diffraction studies it is generally believed that B-DNA has the structural parameters n = 10 and h = 3.4 Å. However, for the first time we report that polymorphism in the B-form can be observed in DNA fibres. This was achieved by the precise control of salt and humidity in fibres and by the application of the precession method of X-ray diffraction to DNA fibres. The significant result obtained is that n = 10 is not observed for crystalline fibre patterns. In fact, n = 10 and h = 3.4 Å are not found to occur simultaneously. Instead, a range of values, n = 9.6–10.0 and h = 3.35 Å–3.41 Å is observed.
Resumo:
We have investigated structural transitions in Poly(dG-dC) and Poly(dG-Me5dC) in order to understand the exact role of cations in stabilizing left-handed helical structures in specific sequences andthe biological role, if any, of these structures. From a novel temperature dependent transition it has been shown that a minor fluctuation in Na+ concentration at ambient temperature can bring about Β to Ζ transition. Forthe first time, wehave observed a novel double transition in poly(dG-Me5dC) as the Na+ concentration is gradually increased. This suggests that a minor fluctuation in Na+ concentration in conjunction with methylation may transform small stretches of CG sequences from one conformational state to another. These stretches could probably serve as sites for regulation. Supercoiled formV DNA reconstituted from pBR322 and pßG plasmids have been studied as model systems, in order to understand the nature and role of left-handed helical conformation in natural sequences. A large portion of DNA in form V, obtained by reannealing the two complementary singlestranded circles is forced to adopt left-handed double helical structure due to topological constraints (Lk = 0). Binding studies with Z-DNA specific antibody and spectroscopic studies confirm the presence of left-handed Z-structure in the pßG and pßR322 form V DNA. Cobalt hexamine chloride, which induces Z-form in Poly(dG-dC) stabilizes the Z-conformation in form V DNA even in the non-alternating purine-pyrimidine sequences. A reverse effect is observed with ethidium bromide. Interestingly, both topoisomerase I and II (from wheat germ) act effectively on form V DNA to give rise to a species having an electrophoretic mobility on agarose gel similar to that of open circular (form II) DNA. Whether this molecule is formed as a result of the left-handed helical segments of form V DNA undergoing a transition to the right-handed B-form during the topoisomerase action remains to be solved.
Resumo:
The conformational flexibility inherent in the polynucleotide chain plays an important role in deciding its three-dimensonal structure and enables it to undergo structural transitions in order to fulfil all its functions. Following certain stereochemical guidelines, both right and left handed double-helical models have been built in our laboratory and they are in reasonably good agreement with the fibre patterns for various polymorphous forms of DNA. Recently, nuclear magnetic resonance spectroscopy has become an important technique for studying the solution conformation and polymorphism of nucleic acids. Several workers have used 1H nuclear magnetic resonance nuclear Overhauser enhancement measurements to estimate the interproton distances for the various DNA oligomers and compared them with the interproton distances for particular models of A and Β form DNA. In some cases the solution conformation does not seem to fit either of these models. We have been studying various models for DNA with a view to exploring the full conformational space allowed for nucleic acid polymers. In this paper, the interproton distances calculated for the different stereochemically feasible models of DNA are presented and they are compared and correlated against those obtained from 1Η nuclear magnetic resonance nuclear Overhauser enhancement measurements of various nucleic acid oligomers.