985 resultados para biological variation
Resumo:
The athlete biological passport (ABP) was recently implemented in anti-doping work and is based on the individual and longitudinal monitoring of haematological or urine markers. These may be influenced by illicit procedures performed by some athletes with the intent to improve exercise performance. Hence the ABP is a valuable tool in the fight against doping. Actually, the passport has been defined as an individual and longitudinal observation of markers. These markers need to belong to the biological cascade influenced by the application of forbidden hormones or more generally, affected by biological manipulations which can improve the performance of the athlete. So far, the haematological and steroid profile modules of the ABP have been implemented in major sport organisations, and a further module is under development. The individual and longitudinal monitoring of some blood and urine markers are of interest, because the intraindividual variability is lower than the corresponding interindividual variability. Among the key prerequisites for the implementation of the ABP is its prospect to resist to the legal and scientific challenges. The ABP should be implemented in the most transparent way and with the necessary independence between planning, interpretation and result management of the passport. To ensure this, the Athlete Passport Management Unit (APMU) was developed and the WADA implemented different technical documents associated to the passport. This was carried out to ensure the correct implementation of a profile which can also stand the challenge of any scientific or legal criticism. This goal can be reached only by following strictly important steps in the chain of production of the results and in the management of the interpretation of the passport. Various technical documents have been then associated to the guidelines which correspond to the requirements for passport operation. The ABP has been completed very recently by the steroid profile module. As for the haematological module, individual and longitudinal monitoring have been applied and the interpretation cascade is also managed by a specific APMU in a similar way as applied in the haematological module. Thus, after exclusion of any possible pathology, specific variation from the individual norms will be then considered as a potential misuse of hormones or other modulators to enhance performance.
Resumo:
The function of sleep remains unknown. To gain insight into the function of sleep in natural conditions, I assessed variation in sleep architecture and its link with fitness-related phenotypic traits. I considered melanin-based coloration because its underlying genetic basis is very well known giving an opportunity to examine whether some genes pleiotropically regulate both coloration and sleep. The melanocortin system is known to generate covariation between melanin-based coloration and other phenotypes like behaviour, physiology and life history traits. I investigated whether this system of genes could participate in the co-expression of coloration and sleep. I carried out a study with nestling barn owls (Tyto alba) in order to tackle the potential link between variation in color traits and the ontogeny of sleep under natural conditions. For this I established a suitable method for recording the brain activity (electroencephalogram) of owls in nature. Birds are especially interesting, because they convergently evolved sleep states similar to those exhibited by mammals. As in mammals, I found that in owlets time spent in rapid eye movement (REM) sleep declines with age, a relationship thought to eflect developmental changes in the brain. Thus this developmental trajectory appears to reflect a fundamental feature of sleep. Additionally, I discovered an association between a gene involved in melanism expressed in the feather follicles (proprotein convertase subtilisin/kexin type 2, PCSK2) and the age-related changes in sleep in the brain. Nestlings with higher expression levels of PCSK2 showed a more precocial pattern of sleep development and a higher degree of melanin-based coloration compared to nestlings with lower PCSK2 expression. Also sleep architecture and the development of rhythmicity in brain and physical activity was related to plumage traits of the nestlings and their biological parents. This pattern during ontogeny might reflect differences in life l history strategies, antipredator behaviour and developmental pace. Therefore, differently colored individuals may differentially deal with trade-offs between the costs and benefits of sleep which in turn lead to differences in brain organization and ultimately fitness. These results should stimulate evolutionary biologists to consider sleep as a major life history trait. Résumé La fonction du sommeil reste inconnue. Afin d'acquérir une meilleur compréhension de la fonction du sommeil dans les conditions naturelles, j'ai analysé la variation dans l'architecture du sommeil et son lien avec d'autres traits phénotypiques liés au succès reproducteur (fitness). J'ai choisi et examiné la coloration mélanique, car ses bases génétiques sont bien connues et il est ainsi possible d'étudier si certains gènes, de façon pléiotropique régulent à la fois la coloration et le sommeil. J'ai exploré si ce système génétique était impliqué dans la co-expression de la coloration et du sommeil. J'ai effectué mon étude sur des poussins de chouette effraie (Tyto alba) en condition naturelle, pour rechercher ce lien potentiel entre la variation de la coloration et l'ontogenèse du sommeil. Dans ce but, j'ai établi une méthodologie permettant d'enregistrer l'activité cérébrale (électroencéphalogramme) des chouettes dans la nature. Les oiseaux sont particulièrement intéressants car ils ont développé, par évolution convergente, des phases de sommeil similaires à celles des mammifères. De manière semblable à ce qui a été montré chez les mammifères, j'ai découvert que le temps passé dans le sommeil paradoxal diminue avec l'âge des poussins. On pense que ceci est dû aux changements développementaux au niveau du cerveau. Cette trajectoire développementale semble refléter une caractéristique fondamentale du sommeil. J'ai également découvert une association entre l'un des gènes impliqué dans le mélanisme, exprimé dans les follicules plumeux (proprotein convertase subtilisin/kexin type 2, PCSK2), et les changements dans la structure du sommeil avec l'âge. Les poussins ayant un niveau d'expression génétique élevé de la PCSK2 présentent une structure du sommeil plus précoce et un taux de coloration dû à la mélanine plus élevé que des poussins avec un niveau d'expression moindre de la PCSK2. L'architecture du sommeil et le développement de la rythmicité dans le cerveau ainsi que l'activité physique sont également liés à la coloration des plumes des poussins et pourraient ainsi refléter des différences de stratégies d'histoire de vie, de comportements anti-prédateur et de vitesses développementales. Ainsi, des individus de coloration différente sembleraient traiter différemment les coûts et les bénéfices du sommeil, ce qui aurait des conséquences sur l'organisation cérébrale et pour finir, sur le succès reproducteur. Ces résultats devraient encourager les biologistes évolutionnistes à considérer le sommeil comme un important trait d'histoire de vie. Zusammenfassung Die Funktion von Schlaf ist noch unbekannt. Um mehr Einsicht in diese unter natürlichen Bedingungen zu bekommen, habe ich die Variation in der Schlafarchitektur und die Verknüpfung mit phänotypischen Merkmalen, die mit der Fitness zusammenhängen, studiert. Ich habe mir melanin-basierte Färbung angesehen, da die zugrunde liegende genetische Basis bekannt ist und somit die Möglichkeit gegeben ist, zu untersuchen, ob einige Gene beides regulieren, Färbung und Schlaf. Das melanocortin System generiert eine Kovariation zwischen melanin-basierter Färbung und anderen phänotypischer Merkmale wie Verhalten, Physiologie und Überlebensstrategien. Ich habe untersucht, ob dieses Gensystem an einer gleichzeitigen Steuerung von Färbung und Schlaf beteiligt ist. Dazu habe ich Schleiereulen (Tyto alba) studiert um einen möglichen Zusammenhang zwischen der Variation in der Pigmentierung und der Entwicklung des Schlafs unter natürlichen Bedingungen zu entdecken. Für diese Studie entwickelte ich eine Methode um die Gehirnaktivität (Elektroenzephalogramm) bei Eulen in der Natur aufzunehmen. Vögel sind besonders interessant, da sie die gleichen Schlafstadien aufweisen wie Säugetiere und diese unabhängig konvergent entwickelt haben. Genauso wie bei Säugetieren nahm die Dauer des sogenannten ,,rapid eye movement" (REM) - Schlafes mit zunehmendem Alter ab. Es wird angenommen, dass dieser Zusammenhang die Entwicklung des Gehirns widerspiegelt. Daher scheint dieses Entwicklungsmuster ein fundamentaler Aspekt von Schlaf zu sein. Zusätzlich entdeckte ich einen Zusammenhang zwischen der Aktivität eines Gens in den Federfollikeln (proprotein convertase subtilisin/kexin type 2, PCSK2), das für die Ausprägung schwarzer Punkte auf den Federn der Eulen verantwortlich ist, und den altersabhängigen Änderungen im Schlafmuster im Gehirn. Küken mit höherer Aktivität von PCSK2 zeigten eine frühreifere Schlafentwicklung und eine dunklere Färbung als Küken mit niedriger PCSK2 Aktivität. Die Architekture des Schlafes und die Entwicklung der Rhythmik im Gehirn und die der physischen Aktivität ist mit der Färbung des Gefieders von den Küken und ihren Eltern verknüpft. Dieses Muster während der Entwicklung kann Unterschiede in Überlebensstrategien, Feindabwehrverhalten und in der Entwicklungsgeschwindigkeit reflektieren. Unterschiedlich gefärbte Individuen könnten unterschiedliche Strategien haben um zwischen den Kosten und Nutzen von Schlaf zu entscheiden, was zu Unterschieden in der Gehirnstruktur führen kann und letztendlich zur Fitness. Diese Ergebnisse sollten Evolutionsbiologen stimulieren Schlaf als einen wichtigen Bestandteil des Lebens zu behandeln.
Resumo:
Cervical artery dissection (CeAD), a mural hematoma in a carotid or vertebral artery, is a major cause of ischemic stroke in young adults although relatively uncommon in the general population (incidence of 2.6/100,000 per year). Minor cervical traumas, infection, migraine and hypertension are putative risk factors, and inverse associations with obesity and hypercholesterolemia are described. No confirmed genetic susceptibility factors have been identified using candidate gene approaches. We performed genome-wide association studies (GWAS) in 1,393 CeAD cases and 14,416 controls. The rs9349379[G] allele (PHACTR1) was associated with lower CeAD risk (odds ratio (OR) = 0.75, 95% confidence interval (CI) = 0.69-0.82; P = 4.46 × 10(-10)), with confirmation in independent follow-up samples (659 CeAD cases and 2,648 controls; P = 3.91 × 10(-3); combined P = 1.00 × 10(-11)). The rs9349379[G] allele was previously shown to be associated with lower risk of migraine and increased risk of myocardial infarction. Deciphering the mechanisms underlying this pleiotropy might provide important information on the biological underpinnings of these disabling conditions.
Resumo:
Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.
Resumo:
Movements and spatial distribution of host populations are expected to shape the genetic structure of their parasite populations. Comparing the genetic patterns of both interacting species may improve our understanding of their evolutionary history. Moreover, genetic analyses of parasites with horizontal transmission may serve as indicators of historical events or current demographic processes that are not apparent in the genetic signature of their hosts. Here, we compared mitochondrial variation in populations of the ectoparasitic mite Spinturnix myoti with the genetic pattern of its host, the Maghrebian bat Myotis punicus in North Africa and in the islands of Corsica and Sardinia. Mite mitochondrial differentiation among populations was correlated with both host mitochondrial and nuclear differentiation, suggesting spatial co-differentiation of the lineages of the two interacting species. Therefore our results suggest that parasite dispersal is exclusively mediated by host movements, with open water between landmasses as a main barrier for host and parasite dispersal. Surprisingly the unique presence of a continental European mite lineage in Corsica was inconsistent with host phylogeographical history and strongly suggests the former presence of European mouse-eared bats on this island. Parasites may thus act as biological tags to reveal the presence of their now locally extinct host.
Resumo:
BACKGROUND: The model plant Arabidopsis thaliana (Arabidopsis) shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, the potential of Arabidopsis for molecular genetic analysis of this natural variation has increased dramatically in recent years. SCOPE: Advanced genomics has accelerated molecular phylogenetic analysis and gene identification by quantitative trait loci (QTL) mapping and/or association mapping in Arabidopsis. In particular, QTL mapping utilizing natural accessions is now becoming a major strategy of gene isolation, offering an alternative to artificial mutant lines. Furthermore, the genomic information is used by researchers to uncover the signature of natural selection acting on the genes that contribute to phenotypic variation. The evolutionary significance of such genes has been evaluated in traits such as disease resistance and flowering time. However, although molecular hallmarks of selection have been found for the genes in question, a corresponding ecological scenario of adaptive evolution has been difficult to prove. Ecological strategies, including reciprocal transplant experiments and competition experiments, and utilizing near-isogenic lines of alleles of interest will be a powerful tool to measure the relative fitness of phenotypic and/or allelic variants. CONCLUSIONS: As the plant model organism, Arabidopsis provides a wealth of molecular background information for evolutionary genetics. Because genetic diversity between and within Arabidopsis populations is much higher than anticipated, combining this background information with ecological approaches might well establish Arabidopsis as a model organism for plant evolutionary ecology.
Resumo:
Sex-dependent selection can help maintain sexual dimorphism. When the magnitude of selection exerted on a heritable sex trait differs between the sexes, it may prevent each sex to reach its phenotypic optimum. As a consequence, the benefit of expressing a sex trait to a given value may differ between males and females favouring sex-specific adaptations associated with different values of a sex trait. The level of metabolites regulated by genes that are under sex-dependent selection may therefore covary with the degree of ornamentation differently in the two sexes. We investigated this prediction in the barn owl, a species in which females display on average larger black spots on the plumage than males, a heritable ornament. This melanin-based colour trait is strongly selected in females and weakly counter-selected in males indicating sex-dependent selection. In nestling barn owls, we found that daily variation in baseline corticosterone levels, a key hormone that mediates life history trade-offs, covaries with spot diameter displayed by their biological parents. When their mother displayed larger spots, nestlings had lower corticosterone levels in the morning and higher levels in the evening, whereas the opposite pattern was found with the size of paternal spots. Our study suggests a link between daily regulation of glucocorticoids and sex-dependent selection exerted on sexually dimorphic melanin-based ornaments.
Resumo:
Ecological parameters vary in space, and the resulting heterogeneity of selective forces can drive adaptive population divergence. Clinal variation represents a classical model to study the interplay of gene flow and selection in the dynamics of this local adaptation process. Although geographic variation in phenotypic traits in discrete populations could be remainders of past adaptation, maintenance of adaptive clinal variation requires recurrent selection. Clinal variation in genetically determined traits is generally attributed to adaptation of different genotypes to local conditions along an environmental gradient, although it can as well arise from neutral processes. Here, we investigated whether selection accounts for the strong clinal variation observed in a highly heritable pheomelanin-based color trait in the European barn owl by comparing spatial differentiation of color and of neutral genes among populations. Barn owl's coloration varies continuously from white in southwestern Europe to reddish-brown in northeastern Europe. A very low differentiation at neutral genetic markers suggests that substantial gene flow occurs among populations. The persistence of pronounced color differentiation despite this strong gene flow is consistent with the hypothesis that selection is the primary force maintaining color variation among European populations. Therefore, the color cline is most likely the result of local adaptation.
Resumo:
Although gene by environment interactions may play a key role in the maintenance of genetic polymorphisms, little is known about the ecological factors involved in these interactions. We investigated whether food supply and parasites can mediate covariation between the degree of adult pheomelanin-based coloration, a heritable trait, and offspring body mass in the tawny owl (Strix aluco). We swapped clutches between nests to allocate genotypes randomly among environments. Three weeks after hatching, we challenged the immune system of 80 unrelated nestlings with either a phytohemagglutinin (PHA) or a lipopolysaccharide, surrogates of alternative parasites, and then fed them ad lib. or food-restricted them during the following 6 days in the laboratory. Whatever the immune challenge, nestlings fed ad lib. converted food more efficiently into body mass when their biological mother was dark pheomelanic. In contrast, food-restricted nestlings challenged with PHA lost less body mass when their biological mother was pale pheomelanic. Nestling tawny owls born from differently melanic mothers thus show differing reaction norms relative to food availability and parasitism. This suggests that dark and pale pheomelanic owls reflect alternative adaptations to food availability and parasites, factors known to vary in space and time.
Resumo:
BACKGROUND: Defining the molecular genomic basis of the likelihood of developing depressive disorder is a considerable challenge. We previously associated rare, exonic deletion copy number variants (CNV) with recurrent depressive disorder (RDD). Sex chromosome abnormalities also have been observed to co-occur with RDD. METHODS: In this reanalysis of our RDD dataset (N = 3106 cases; 459 screened control samples and 2699 population control samples), we further investigated the role of larger CNVs and chromosomal abnormalities in RDD and performed association analyses with clinical data derived from this dataset. RESULTS: We found an enrichment of Turner's syndrome among cases of depression compared with the frequency observed in a large population sample (N = 34,910) of live-born infants collected in Denmark (two-sided p = .023, odds ratio = 7.76 [95% confidence interval = 1.79-33.6]), a case of diploid/triploid mosaicism, and several cases of uniparental isodisomy. In contrast to our previous analysis, large deletion CNVs were no more frequent in cases than control samples, although deletion CNVs in cases contained more genes than control samples (two-sided p = .0002). CONCLUSIONS: After statistical correction for multiple comparisons, our data do not support a substantial role for CNVs in RDD, although (as has been observed in similar samples) occasional cases may harbor large variants with etiological significance. Genetic pleiotropy and sample heterogeneity suggest that very large sample sizes are required to study conclusively the role of genetic variation in mood disorders.
Resumo:
BACKGROUND: Many species contain evolutionarily distinct groups that are genetically highly differentiated but morphologically difficult to distinguish (i.e., cryptic species). The presence of cryptic species poses significant challenges for the accurate assessment of biodiversity and, if unrecognized, may lead to erroneous inferences in many fields of biological research and conservation. RESULTS: We tested for cryptic genetic variation within the broadly distributed alpine mayfly Baetis alpinus across several major European drainages in the central Alps. Bayesian clustering and multivariate analyses of nuclear microsatellite loci, combined with phylogenetic analyses of mitochondrial DNA, were used to assess population genetic structure and diversity. We identified two genetically highly differentiated lineages (A and B) that had no obvious differences in regional distribution patterns, and occurred in local sympatry. Furthermore, the two lineages differed in relative abundance, overall levels of genetic diversity as well as patterns of population structure: lineage A was abundant, widely distributed and had a higher level of genetic variation, whereas lineage B was less abundant, more prevalent in spring-fed tributaries than glacier-fed streams and restricted to high elevations. Subsequent morphological analyses revealed that traits previously acknowledged as intraspecific variation of B. alpinus in fact segregated these two lineages. CONCLUSIONS: Taken together, our findings indicate that even common and apparently ecologically well-studied species may consist of reproductively isolated units, with distinct evolutionary histories and likely different ecology and evolutionary potential. These findings emphasize the need to investigate hidden diversity even in well-known species to allow for appropriate assessment of biological diversity and conservation measures.
Resumo:
The species Eremanthus mattogrossensis, known as "veludo do cerrado" (cerrado velvet), is native to the Brazilian Cerrado. Because the amount of metabolites present in plants may be influenced by biological and environmental factors, here we conducted an HPLC-DAD-MS/MS investigation of the metabolite concentrations found in the MeOH/H2O extract of the leaves of this species. The main compounds were identified and quantified, and the metabolites were grouped by chemical class (caffeoylquinic acids, flavonoids, and sesquiterpene lactone). Statistical analysis indicated a straight correlation between the quantity of metabolites and seasonality, suggesting that environmental properties elicit important metabolic responses.
Resumo:
It has been commonly thought that standards of beauty are arbitrary cultural conventions that vary between cultures and time. In my thesis I found that it is not so. Instead, I show that attractiveness and preferred traits serve as cues to phenotypic qualities that provide selective benefits for those who choose their mates based on these criteria. In the first study I show that attractive men have a stronger antibody response to the hepatitis b vaccine and higher levels of testosterone than their less attractive peers. Men with low levels of testosterone also tend to have high levels of the stress hormone cortisol, suggesting that their immune responses may have been inhibited by stress hormones. Thus, facial attractiveness may serve as an honest cue of the strength of immune defence in men. In the second study, I show that the attractiveness of the male body is also a cue of better immunity. In addition, I show that adiposity, both in men’s faces and bodies, is a better cue of the strength of immunity and attractiveness than of masculinity. In the third study, I test the preferences of women from 13 countries for facial cues of testosterone and cortisol. I show that there is cross-cultural variation in women’s preference for cues of testosterone and cortisol in male faces. I found a relationship between the health of a nation and women’s preferences for cues of testosterone in the male face and the interaction between preferences for cues of testosterone and cortisol. I show also a relationship between preferences for cues of testosterone and a societal-level measure of parasite stress. Thus, it seems that societal-level ecological factors influence the relative value of traits as revealed by combinations of testosterone and stress hormones. In the fourth study, I show that women’s immune responsiveness (amount of antibodies produced) does not predict facial attractiveness. Instead, plasma cortisol level is negatively associated with attractiveness, indicating that stressed women look less attractive. Fat percentage is curvilinearly associated with facial attractiveness, indicating that being too thin or too fat reduces attractiveness. This study suggests that in contrast to men, facial attractiveness in women does not indicate the strength of immune defence, but is associated with other aspects of long-term health and fertility: circulating levels of the stress hormone cortisol and the percentage of body fat. In the last study I show that the attractiveness of men’s body odor is positively correlated with stress hormone levels, suggesting also that the attractiveness of body odors may signal the phenotypic quality of males to females. However, the attractiveness of men’s body odor was not associated with testosterone levels. My thesis suggests that the standard of beauty is not in the eye of the beholder. Instead, our standard of beauty is hardwired in our brains by genes that are selected by natural selection and also influenced by current environmental conditions.
Influence of surface functionalization on the behavior of silica nanoparticles in biological systems
Resumo:
Personalized nanomedicine has been shown to provide advantages over traditional clinical imaging, diagnosis, and conventional medical treatment. Using nanoparticles can enhance and clarify the clinical targeting and imaging, and lead them exactly to the place in the body that is the goal of treatment. At the same time, one can reduce the side effects that usually occur in the parts of the body that are not targets for treatment. Nanoparticles are of a size that can penetrate into cells. Their surface functionalization offers a way to increase their sensitivity when detecting target molecules. In addition, it increases the potential for flexibility in particle design, their therapeutic function, and variation possibilities in diagnostics. Mesoporous nanoparticles of amorphous silica have attractive physical and chemical characteristics such as particle morphology, controllable pore size, and high surface area and pore volume. Additionally, the surface functionalization of silica nanoparticles is relatively straightforward, which enables optimization of the interaction between the particles and the biological system. The main goal of this study was to prepare traceable and targetable silica nanoparticles for medical applications with a special focus on particle dispersion stability, biocompatibility, and targeting capabilities. Nanoparticle properties are highly particle-size dependent and a good dispersion stability is a prerequisite for active therapeutic and diagnostic agents. In the study it was shown that traceable streptavidin-conjugated silica nanoparticles which exhibit a good dispersibility could be obtained by the suitable choice of a proper surface functionalization route. Theranostic nanoparticles should exhibit sufficient hydrolytic stability to effectively carry the medicine to the target cells after which they should disintegrate and dissolve. Furthermore, the surface groups should stay at the particle surface until the particle has been internalized by the cell in order to optimize cell specificity. Model particles with fluorescently-labeled regions were tested in vitro using light microscopy and image processing technology, which allowed a detailed study of the disintegration and dissolution process. The study showed that nanoparticles degrade more slowly outside, as compared to inside the cell. The main advantage of theranostic agents is their successful targeting in vitro and in vivo. Non-porous nanoparticles using monoclonal antibodies as guiding ligands were tested in vitro in order to follow their targeting ability and internalization. In addition to the targeting that was found successful, a specific internalization route for the particles could be detected. In the last part of the study, the objective was to clarify the feasibility of traceable mesoporous silica nanoparticles, loaded with a hydrophobic cancer drug, being applied for targeted drug delivery in vitro and in vivo. Particles were provided with a small molecular targeting ligand. In the study a significantly higher therapeutic effect could be achieved with nanoparticles compared to free drug. The nanoparticles were biocompatible and stayed in the tumor for a longer time than a free medicine did, before being eliminated by renal excretion. Overall, the results showed that mesoporous silica nanoparticles are biocompatible, biodegradable drug carriers and that cell specificity can be achieved both in vitro and in vivo.
Resumo:
The existence of a circadian rhythm of atrial natriuretic peptide (ANP) in humans is controversial. We studied the plasma ANP response to isotonic blood volume expansion in the morning and in the afternoon and its relationship with adrenocorticotropic hormone (ACTH)-cortisol diurnal variation in seven normal subjects. Basal plasma ANP level was similar in the morning (19.6 ± 2.4 pg/ml) and in the afternoon (21.8 ± 4.8 pg/ml). The ANP peak obtained with saline infusion (0.9% NaCl, 12 ml/kg) in the morning (49.4 ± 8 pg/ml) did not differ from that obtained in the afternoon (60.3 ± 10.1 pg/ml). There was no correlation between the individual mean cortisol and ACTH levels and the ANP peak obtained with saline infusion. These data indicate no diurnal variation in plasma ANP secretion induced by blood volume expansion and no relationship between plasma ANP peak and ACTH-cortisol diurnal variation