927 resultados para bioactive glass 45S5
Resumo:
Potassium fluorrichterite (KNaCaMg5Si8O22F2) glass-ceramics were modified by either increasing the concentration of calcium (GC5) or by the addition of P2O5 (GP2). Rods (2 x 4 mm) of stoichiometric fluorrichterite (GST), modified compositions (GC5 and GP2) and 45S5 bioglass, which was used as the reference material, were prepared using a conventional lost-wax technique. Osteoconductivity was investigated by implantation into healing defects in the midshaft of rabbit femora. Specimens were harvested at 4 and 12 weeks following implantation and tissue response was investigated using computed microtomography (mu CT) and histological analyses. The results showed greatest bone to implant contact in the 45S5 bioglass reference material at 4 and 12 weeks following implantation, however, GST, GC5 and GP2 all showed direct bone tissue contact with evidence of new bone formation and cell proliferation along the implant surface into the medullary space. There was no evidence of bone necrosis or fibrous tissue encapsulation around the test specimens. Of the modified potassium fluorrichterite compositions, GP2 showed the greatest promise as a bone substitute material due to its osteoconductive potential and superior mechanical properties.
Resumo:
Bone is the second most widely transplanted tissue after blood. Synthetic alternatives are needed that can reduce the need for transplants and regenerate bone by acting as active temporary templates for bone growth. Bioactive glasses are one of the most promising bone replacement/regeneration materials because they bond to existing bone, are degradable and stimulate new bone growth by the action of their dissolution products on cells. Sol-gel-derived bioactive glasses can be foamed to produce interconnected macropores suitable for tissue ingrowth, particularly cell migration and vascularization and cell penetration. The scaffolds fulfil many of the criteria of an ideal synthetic bone graft, but are not suitable for all bone defect sites because they are brittle. One strategy for improving toughness of the scaffolds without losing their other beneficial properties is to synthesize inorganic/organic hybrids. These hybrids have polymers introduced into the sol-gel process so that the organic and inorganic components interact at the molecular level, providing control over mechanical properties and degradation rates. However, a full understanding of how each feature or property of the glass and hybrid scaffolds affects cellular response is needed to optimize the materials and ensure long-term success and clinical products. This review focuses on the techniques that have been developed for characterizing the hierarchical structures of sol-gel glasses and hybrids, from atomicscale amorphous networks, through the covalent bonding between components in hybrids and nanoporosity, to quantifying open macroporous networks of the scaffolds. Methods for non-destructive in situ monitoring of degradation and bioactivity mechanisms of the materials are also included. © 2012 The Royal Society.
Resumo:
In recent years, there has been considerable interest in the potential antibacterial properties that bioactive glasses may possess. However, there have been several conflicting reports on the antibacterial efficacy of 45S5 Bioglass®. Various mechanisms regarding its mode of action have been proposed, such as changes in the environmental pH, increased osmotic pressure, and ‘needle like’ sharp glass debris which could potentially damage prokaryotic cell walls and thus inactivate bacteria. In this current study, a systematic investigation was undertaken on the antibacterial efficacy of 45S5 Bioglass® on Escherichia coli NCTC 10538 and Staphylococcus aureus ATCO 6538 under a range of clinically relevant scenarios including varying Bioglass® concentration, direct and indirect contact between Bioglass® and microorganisms, static and shaking incubation conditions, elevated and neutralised pH environments. The results demonstrated that under elevated pH conditions, Bioglass® particles has no antibacterial effect on S. aureus whilst, a concentration dependent antibacterial effect against E. coli was observed. However, the antibacterial activity ceased when the pH of the media was neutralised. The results of this current study therefore suggest that the mechanism of antibacterial activity of Bioglass® is associated with changes in the environmental pH; an environment that is less likely to occur in vivo due to buffering of the system.
Resumo:
Publicado em "Journal of tissue engineering and regenerative medicine". Vol. 8, suppl. s1 (2014)
Resumo:
This article presents the results of a study of the efficiency of silanation process of calcium phosphate glasses particles and its effect on the bioactivity behavior of glasspoly( methyl methacrylate) (PMMA) composites. Two different calcium phosphate glasses: 44.5CaO-44.5P2O5-11Na2O (BV11) and 44.5CaO-44.5P2O5-6Na2O-5TiO2 (G5) were synthesized and treated with silane coupling agent. The glasses obtained were characterized by Microprobe and BET while the efficiency of silanation process was determined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Thermal Analysis (DTA and TG)techniques. The content of coupling agent chemically tightly bond to the silanated glasses ascended to 1.69 6 0.02 wt % for BV11sil glass and 0.93 6 0.01 wt % for G5sil glass. The in vitro bioactivity test carried out in Simulated Body Fluid (SBF) revealed certain bioactive performance with the use of both silanated glasses in a 30% (by weight) as filler of the PMMA composites because of a superficial deposition of an apatite-like layer with low content of CO3 22 and HPO4 22 in its structure after soaking for 30 days occurred. VC 2013 Wiley Periodicals,Inc. J Biomed Mater Res Part B: Appl Biomater 00B: 000-000, 2013.
Resumo:
Bioactive glasses are excellent candidates for implant materials, because they can form a chemical bond to bone or guide bone growth, depending on the glass composition. Some compositions have even shown soft tissue attachment and antimicrobial effects. So far, most clinical applications are based on monoliths, plates and particulates of different grain sizes. There is a growing interest in special products such as porous implants sintered from microspheres and fibers drawn from preforms or glass melts. The viscosity range at which these are formed coincides with the crystallization temperature range for most bioactive glasses, thus complicating the manufacturing process. In this work, the crystallization tendency and its kinetics for a series of glasses with their compositions within the range of bioactivity were investigated. The factors affecting crystallization and how it is related to composition were studied by means of thermal analysis and hot stage microscopy. The crystal compositions formed during isothermal and non-isothermal heat treatments were analyzed with SEM-EDXA and X-ray diffraction analysis. The temperatures at which sintering and fiber drawing can take place without interfering with crystallization were determined and glass compositions which are suitable for these purposes were established. The bioactivity of glass fibers and partly crystallized glass plates was studied by soaking them in simulated body fluid (SBF). The thickness of silica, calcium and phosphate rich reaction layers on the glass surface after soaking was used as an indication of the bioactivity. The results indicated that the crystallization tendencies of the experimental glasses are strongly dependent on composition. The main factor affecting the crystallization was found to be the alkali oxide content: the higher the alkali oxide content the lower the crystallization temperature. The primary crystalline phase formed at low temperatures in these glasses was sodium calcium silicate. The crystals were found to form through internal nucleation, leading to bulk crystallization. These glasses had high bioactivity in vitro. Even when partially crystalline, they formed typical reaction layers, indicating bioactivity. In fact, sodium calcium silicate crystals were shown to transform in vitro into hydroxyapatite during soaking. However, crystallization should be avoided because it was shown to retard dissolution, bioactivity reactions and complicate fiber drawing process. Glass compositions having low alkali oxide content showed formation of wollastonite crystals on the surface, at about 300°C above the glass transition temperature. The wide range between glass transition and crystallization allowed viscous flow sintering of these compositions. These glasses also withstood the thermal treatments required for fiber drawing processing. Precipitation of calcium and phosphate on fibers of these glasses in SBF suggested that they were osteoconductive. Glasses showing bioactivity crystallize easily, making their hot working challenging. Undesired crystallization can be avoided by choosing suitable compositions and heat treatment parameters, allowing desired product forms to be attained. Small changes in the oxide composition of the glass can have large effects and therefore a thorough understanding of glass crystallization behavior is a necessity for a successful outcome, when designing and manufacturing implants containing bioactive glasses.
Resumo:
This study aimed at investigating in vitro osteogenesis on three fluorcanasite glass-ceramic compositions with different solubilities (K3, K5, and K8). Osteoblastic cells were obtained from human alveolar bone fragments and cultured under standard osteogenic condition until subconfluence. First passage cells were cultured on K3, K5, and K8 and on Bioglass (R) 45S5 (45S5-control). Cell adhesion was evaluated at 24 h. For proliferation and viability, cells were cultured for 1, 4, and 10 days. Total protein content and alkaline phosphatase (ALP) activity were measured at 7, 14, and 21 days. Cultures were stained with Alizarin red at 21 days, for detection of mineralized matrix. Data were compared by ANOVA followed by Duncan`s test. Cell adhesion, cell proliferation, viability, total protein content, and ALP activity were not affected by fluorcanasite glass-ceramic composition and solubility. Bone-like formation was similar on all fluorcanasite-glass ceramics and was reduced compared to 45S5. The changes in the chemical composition and consequently solubility of the fluorcanasite glass-ceramics tested here did not significantly alter the in vitro osteogenesis. Further modifications of the chemical composition of the fluorcanasite glass-ceramic would be required to improve bone response, making this biomaterial a good candidate to be employed as a bone substitute.
Resumo:
Objective: the aim of this in vivo study was to evaluate the response of the pulp-dentin complex following application of resin-modified glass-ionomer cement, calcium hydroxide hard-setting cement and EDTA-soluble preparation of dentine matrix proteins (ESDP) in deep cavities prepared in non-human primate teeth. Methods: Eighteen deep Class V buccal cavities were prepared in premolars of four capuccin monkeys. In Groups 1 and 2, the cavity floor was lined with ESDP or a resin-modified glass-ionomer cement (Vitrebond - 3M ESPE), respectively. In Group 3 (control), the cavity was lined with a hard setting calcium hydroxide cement (Dycal - Dentsply). The cavities were subsequently filled with amalgam. After 6 months, the animals were sacrificed and the teeth were prepared for microscopic assessment. Six-micron thick serial sections were stained with H/E, Masson's trichrome and Brown & Brenn techniques. Results: No inflammatory pulpal response was observed for all experimental and control Groups. However, the amount of reactionary dentin deposition differed between groups in the rank order ESDP (Group 1) > calcium hydroxide (Group 3) > resin-modified glass-ionomer (Group 2). These differences were statistically significant. Conclusions: All materials were biocompatible when applied in deep cavities. ESDP stimulated higher deposition of reactionary dentin matrix than Vitrebond and Dycal.
Resumo:
Modified fluorcanasite glasses were fabricated by either altering the molar ratios of Na 2O and CaO or by adding P 2O 5 to the parent stoichiometric glass compositions. Glasses were converted to glass-ceramics by a controlled two-stage heat treatment process. Rods (2 mm x 4 mm) were produced using the conventional lost-wax casting technique. Osteoconductive 45S5 bioglass was used as a reference material. Biocompatibility and osteoconductivity were investigated by implantation into healing defects (2 mm) in the midshaft of rabbit femora. Tissue response was investigated using conventional histology and scanning electron microscopy. Histological and histomorphometric evaluation of specimens after 12 weeks implantation showed significantly more bone contact with the surface of 45S5 bioglass implants when compared with other test materials. When the bone contact for each material was compared between experimental time points, the Glass-Ceramic 2 (CaO rich) group showed significant difference (p = 0.027) at 4 weeks, but no direct contact at 12 weeks. Histology and backscattered electron photomicrographs showed that modified fluorcanasite glass-ceramic implants had greater osteoconductivity than the parent stoichiometric composition. Of the new materials, fluorcanasite glass-ceramic implants modified by the addition of P 2O 5 showed the greatest stimulation of new mineralized bone tissue formation adjacent to the implants after 4 and 12 weeks implantation. © 2010 Wiley Periodicals, Inc.
Resumo:
Strontium has been substituted for calcium in the glass series (SiO2)49.46(Na2O)26.38(P2O5)1.07(CaO)23.08x(SrO)x (where x = 0, 11.54, 23.08) to elucidate their underlying atomic-scale structural characteristics as a basis for understanding features related to the bioactivity. These bioactive glasses have been investigated using isomorphic neutron and X-ray diffraction, Sr K-edge EXAFS and solid state 17O, 23Na, 29Si, 31P and 43Ca magic-angle-spinning (MAS) NMR. An effective isomorphic substitution first-order difference function has been applied to the neutron diffraction data, confirming that Ca and Sr behave in a similar manner within the glass network, with residual differences attributed to solely the variation in ionic radius between the two species. The diffraction data provides the first direct experimental evidence of split Ca–O nearest-neighbour correlations in these melt quench bioactive glasses, together with an analogous splitting of the Sr–O correlations; the correlations are attributed to the metal ions correlated either to bridging or to non-bridging oxygen atoms. Triple quantum (3Q) 43Ca MAS NMR corroborates the split Ca–O correlations. Successful simplification of the 2 < r (A) < 3 region via the difference method has also revealed two distinct Na environments. These environments are attributed to sodium correlated either to bridging or to nonbridging oxygen atoms. Complementary multinuclear MAS NMR, Sr K-edge EXAFS and X-ray diffraction data supports the structural model presented. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design.
Resumo:
Nickel and cobalt are both known to stimulate the hypoxia-inducible factor-1 (HIF-1a), thus significantly improving blood vessel formation in tissue engineering applications. We have manufactured nickel and cobalt doped bioactive glasses to act as a controlled delivery mechanism of these ions. The resultant structural consequences have been investigated using the methods of isotopic and isomorphic substitution applied to neutron diffraction. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design. Results show that nickel and cobalt adopt a mixed structural role within these bioactive glasses occupying both network-forming (tetrahedral) and network-modifying (5-fold) geometries. Two thirds of the Ni (or Co) occupies a five-fold geometry with the remaining third in a tetrahedral environment. A direct comparison of the primary structural correlations (e.g. Si-O, Ca-O, Na-O and O-Si-O) between the archetypal 45S5 Bioglass® and the Ni and Co glasses studied here reveal no significant differences. This indicates that the addition of Ni (or Co) will have no adverse effects on the existing structure, and thus on in vitro/in vivo dissolution rates and therefore bioactivity of these glasses.
Resumo:
Sol-gel-synthesized bioactive glasses may be formed via a hydrolysis condensation reaction, silica being introduced in the form of tetraethyl orthosilicate (TEOS), and calcium is typically added in the form of calcium nitrate. The synthesis reaction proceeds in an aqueous environment; the resultant gel is dried, before stabilization by heat treatment. These materials, being amorphous, are complex at the level of their atomic-scale structure, but their bulk properties may only be properly understood on the basis of that structural insight. Thus, a full understanding of their structure-property relationship may only be achieved through the application of a coherent suite of leading-edge experimental probes, coupled with the cogent use of advanced computer simulation methods. Using as an exemplar a calcia-silica sol-gel glass of the kind developed by Larry Hench, in the memory of whom this paper is dedicated, we illustrate the successful use of high-energy X-ray and neutron scattering (diffraction) methods, magic-angle spinning solid-state NMR, and molecular dynamics simulation as components to a powerful methodology for the study of amorphous materials.
Resumo:
Extraction processes are largely used in many chemical, biotechnological and pharmaceutical industries for recovery of bioactive compounds from medicinal plants. To replace the conventional extraction techniques, new techniques as high-pressure extraction processes that use environment friendly solvents have been developed. However, these techniques, sometimes, are associated with low extraction rate. The ultrasound can be effectively used to improve the extraction rate by the increasing the mass transfer and possible rupture of cell wall due the formation of microcavities leading to higher product yields with reduced processing time and solvent consumption. This review presents a brief survey about the mechanism and aspects that affecting the ultrasound assisted extraction focusing on the use of ultrasound irradiation for high-pressure extraction processes intensification.
Resumo:
Several medical and dental schools have described their experience in the transition from conventional to digital microscopy in the teaching of general pathology and histology disciplines; however, this transitional process has scarcely been reported in the teaching of oral pathology. Therefore, the objective of the current study is to report the transition from conventional glass slide to virtual microscopy in oral pathology teaching, a unique experience in Latin America. An Aperio ScanScope® scanner was used to digitalize histological slides used in practical lectures of oral pathology. The challenges and benefits observed by the group of Professors from the Piracicaba Dental School (Brazil) are described and a questionnaire to evaluate the students' compliance to this new methodology was applied. An improvement in the classes was described by the Professors who mainly dealt with questions related to pathological changes instead of technical problems; also, a higher interaction with the students was described. The simplicity of the software used and the high quality of the virtual slides, requiring a smaller time to identify microscopic structures, were considered important for a better teaching process. Virtual microscopy used to teach oral pathology represents a useful educational methodology, with an excellent compliance of the dental students.
Resumo:
The association between tridimensional scaffolds to cells of interest has provided excellent perspectives for obtaining viable complex tissues in vitro, such as skin, resulting in impressive advances in the field of tissue engineering applied to regenerative therapies. The use of multipotent mesenchymal stromal cells in the treatment of dermo-epidermal wounds is particularly promising due to several relevant properties of these cells, such as high capacity of proliferation in culture, potential of differentiation in multiple skin cell types, important paracrine and immunomodulatory effects, among others. Membranes of chitosan complexed with xanthan may be potentially useful as scaffolds for multipotent mesenchymal stromal cells, given that they present suitable physico-chemical characteristics and have adequate tridimensional structure for the adhesion, growth, and maintenance of cell function. Therefore, the purpose of this work was to assess the applicability of bioactive dressings associating dense and porous chitosan-xanthan membranes to multipotent mesenchymal stromal cells for the treatment of skin wounds. The membranes showed to be non-mutagenic and allowed efficient adhesion and proliferation of the mesenchymal stromal cells in vitro. In vivo assays performed with mesenchymal stromal cells grown on the surface of the dense membranes showed acceleration of wound healing in Wistar rats, thus indicating that the use of this cell-scaffold association for tissue engineering purposes is feasible and attractive.