989 resultados para binding-specificity
Resumo:
We describe here a method, based on iterative colony filter screening, for the rapid isolation of binding specificities from a large synthetic repertoire of human antibody fragments in single-chain Fv configuration. Escherichia coli cells, expressing the library of antibody fragments, are grown on a porous master filter, in contact with a second filter coated with the antigen, onto which antibodies secreted by the bacteria are able to diffuse. Detection of antigen binding on the second filter allows the recovery of a number of E.coli cells, including those expressing the binding specificity of interest, which can be submitted to a second round of screening for the isolation of specific monoclonal antibodies. We tested the methodology using as antigen the ED-B domain of fibronectin, a marker of angiogenesis. From an antibody library of 7 × 108 clones, we recovered a number of specifically-binding antibodies of different aminoacid sequence. The antibody clone showing the strongest enzyme-linked immunosorbent assay signal (ME4C) was further characterised. Its epitope on the ED-B domain was mapped using the SPOT synthesis method, which uses a set of decapeptides spanning the antigen sequence synthesised and anchored on cellulose. ME4C binds to the ED-B domain with a dissociation constant Kd = 1 × 10–7 M and specifically stains tumour blood vessels, as shown by immunohistochemical analysis on tumour sections of human and murine origin.
Resumo:
p300 and CBP participate as transcriptional coregulators in the execution of a wide spectrum of cellular gene expression programs controlling cell differentiation, growth and homeostasis. Both proteins act together with sequence-specific transcription factors to modify chromatin structure of target genes via their intrinsic acetyltransferase activity directed towards core histones and some transcription factors. So far, p300-related proteins have been described in animals ranging from Drosophila and Caenorhabditis elegans to humans. In this report, we describe p300/CBP-like polypeptides in the plant Arabidopsis thaliana. Interestingly, homology between animal and plant p300/CBP is largely restricted to a C-terminal segment, about 600 amino acids in length, which encompasses acetyltransferase and E1A-binding domains. We have examined whether this conservation in sequence is paralleled by a conservation in function. The same amino acid residues critical for acetyltransferase activity in human p300 are also critical for the function of one of the plant orthologs. Remarkably, plant proteins bind to the adenovirus E1A protein in a manner recapitulating the binding specificity of mammalian p300/CBP. The striking conservation of an extended segment of p300/CBP suggests that it may constitute a functional entity fulfilling functions that may be essential for all metazoan organisms.
Resumo:
Here we report an approach to the design and production of antibody/ligand pairs, to achieve functional affinity far greater than avidin/biotin. Using fundamental chemical principles, we have developed antibody/ligand pairs that retain the binding specificity of the antibody, but do not dissociate. Choosing a structurally characterized antibody/ligand pair as an example, we engineered complementary reactive groups in the antibody binding pocket and the ligand, so that they would be in close proximity in the antibody/ligand complex. Cross-reactions with other molecules in the medium are averted because of the low reactivity of these groups; however, in the antibody/ligand complex the effective local concentrations of the complementary reactive groups are very large, allowing a covalent reaction to link the two together. By eliminating the dissociation of the ligand from the antibody, we have made the affinity functionally infinite. This chemical manipulation of affinity is applicable to other biological binding pairs.
Resumo:
Antiphospholipid antibodies, including anticardiolipin antibodies (ACA), are strongly associated with recurrent thrombosis in patients with the antiphospholipid syndrome (APS). To date, reports about the binding specificities of ACA and their role(s) in causing and/or sustaining thrombosis in APS are conflicting and controversial. The plasmas of patients with APS, usually containing a mixture of autoantibodies, vary in binding specificity for different phospholipids/cofactors and vary in in vitro lupus anticoagulant activity. Although in vivo assays that allow assessment of the pathogenic procoagulant activity of patient autoantibodies have recently been developed, the complex nature of the mixed species prevented determination of the particular species responsible for in vivo thrombosis. We have generated two human IgG monoclonal ACA from an APS patient with recurrent thrombosis. Both bound to cardiolipin in the presence of 10% bovine serum, but not in its absence, and both were reactive against phosphatidic acid, but were nonreactive against purified human beta-2 glycoprotein 1, DNA, heparan sulfate, or four other test antigens. Both monoclonal autoantibodies lacked lupus anticoagulant activity and did not inhibit prothrombinase activity. Remarkably, one of the monoclonal antibodies has thrombogenic properties when tested in an in vivo mouse model. This finding provides the first direct evidence that a particular antiphospholipid antibody specificity may contribute to in vivo thrombosis.
Resumo:
Nearly all metazoan homeodomains (HDs) possess DNA binding targets that are related by the presence of a TAAT sequence. We use an in vitro genetic DNA binding site selection assay to refine our understanding of the amino acid determinants for the recognition of the TAAT site. Superimposed upon the conserved ability of metazoan HDs to recognize a TAAT core is a difference in their preference for the bases that lie immediately 3' to it. Amino acid position 50 of the HD has been shown to discriminate among these base pairs, and structural studies have suggested that water-mediated hydrogen bonds and van der Waals contacts underlie for this ability. Here, we show that each of six amino acids tested at position 50 can confer a distinct DNA binding specificity.
Resumo:
The ZNF91 gene family, a subset of the Krüppel-associated box (KRAB)-containing group of zinc finger genes, comprises more than 40 loci; most reside on human chromosome 19p12-p13.1. We have examined the emergence and evolutionary conservation of the ZNF91 family. ZNF91 family members were detected in all species of great apes, gibbons, Old World monkeys, and New World monkeys examined but were not found in prosimians or rodents. In each species containing the ZNF91 family, the genes were clustered at one major site, on the chromosome(s) syntenic to human chromosome 19. To identify a putative "founder" gene, > 20 murine KRAB-containing zinc finger protein (ZFP) cDNAs were randomly cloned, but none showed sequence similarity to the ZNF91 genes. These observations suggest that the ZNF91 gene cluster is a derived character specific to Anthropoidea, resulting from a duplication and amplification event some 55 million years ago in the common ancestor of simians. Although the ZNF91 gene cluster is present in all simian species, the sequences of the human ZNF91 gene that confer DNA-binding specificity were conserved only in great apes, suggesting that there is not a high selective pressure to maintain the DNA targets of these proteins during evolution.
Resumo:
[Arg8]vasopressin (AVP) stimulates adrenocorticotropic hormone release from the anterior pituitary by acting on the V1b AVP receptor. This receptor can be distinguished from the vascular/hepatic V1a and renal V2 AVP receptors by its differential binding affinities for structural analogous of AVP. Recent studies have shown that the cloned V1a and V2 receptors are structurally related. We have isolated a clone encoding the V1b receptor from a rat pituitary cDNA library using polymerase chain reaction (PCR)-based methodology. The rat V1b receptor is a protein of 421 amino acids that has 37-50% identity with the V1a and V2 receptors. Homology is particularly high in the seven putative membrane-spanning domains of these guanine nucleotide-binding protein-coupled receptors. Expression of the recombinant receptor in mammalian cells shows the same binding specificity for AVP agonists and antagonists as the rat pituitary V1b receptor. AVP-stimulated phosphotidylinositol hydrolysis and intracellular Ca2+ mobilization in Chinese hamster ovary or COS-7 cells expressing the cloned receptor suggest second messenger signaling through phospholipase C. RNA blot analysis, reverse transcription PCR, and in situ hybridization studies reveal that V1b receptor mRNA is expressed in the majority of pituitary corticotropes as well as in multiple brain regions and a number of peripheral tissues, including kidney, thymus, heart, lung, spleen, uterus, and breast. Thus, the V1b receptor must mediate some of the diverse biological effects of AVP in the pituitary as well as other organs.
Resumo:
HLA-DR13 has been associated with resistance to two major infectious diseases of humans. To investigate the peptide binding specificity of two HLA-DR13 molecules and the effects of the Gly/Val dimorphism at position 86 of the HLA-DR beta chain on natural peptide ligands, these peptides were acid-eluted from immunoaffinity-purified HLA-DRB1*1301 and -DRB1*1302, molecules that differ only at this position. The eluted peptides were subjected to pool sequencing or individual peptide sequencing by tandem MS or Edman microsequencing. Sequences were obtained for 23 peptides from nine source proteins. Three pool sequences for each allele and the sequences of individual peptides were used to define binding motifs for each allele. Binding specificities varied only at the primary hydrophobic anchor residue, the differences being a preference for the aromatic amino acids Tyr and Phe in DRB1*1302 and a preference for Val in DRB1*1301. Synthetic analogues of the eluted peptides showed allele specificity in their binding to purified HLA-DR, and Ala-substituted peptides were used to identify the primary anchor residues for binding. The failure of some peptides eluted from DRB1*1302 (those that use aromatic amino acids as primary anchors) to bind to DRB1*1301 confirmed the different preferences for peptide anchor residues conferred by the Gly-->Val change at position 86. These data suggest a molecular basis for the differential associations of HLA-DRB1*1301 and DRB1*1302 with resistance to severe malaria and clearance of hepatitis B virus infection.
Resumo:
Both the DNA elements and the nuclear factors that direct termination of ribosomal gene transcription exhibit species-specific differences. Even between mammals--e.g., human and mouse--the termination signals are not identical and the respective transcription termination factors (TTFs) which bind to the terminator sequence are not fully interchangeable. To elucidate the molecular basis for this species-specificity, we have cloned TTF-I from human and mouse cells and compared their structural and functional properties. Recombinant TTF-I exhibits species-specific DNA binding and terminates transcription both in cell-free transcription assays and in transfection experiments. Chimeric constructs of mouse TTF-I and human TTF-I reveal that the major determinant for species-specific DNA binding resides within the C terminus of TTF-I. Replacing 31 C-terminal amino acids of mouse TTF-I with the homologous human sequences relaxes the DNA-binding specificity and, as a consequence, allows the chimeric factor to bind the human terminator sequence and to specifically stop rDNA transcription.
Resumo:
Mammalian class A macrophage-specific scavenger receptors (SR-A) exhibit unusually broad binding specificity for a wide variety of polyanionic ligands. The properties of these receptors suggest that they may be involved in atherosclerosis and host defense. We have previously observed a similar receptor activity in Drosophila melanogaster embryonic macrophages and in the Drosophila macrophage-like Schneider L2 cell line. Expression cloning was used to isolate from L2 cells a cDNA that encodes a third class (class C) of scavenger receptor, Drosophila SR-CI (dSR-CI). dSR-CI expression was restricted to macrophages/hemocytes during embryonic development. When expressed in mammalian cells, dSR-CI exhibited high affinity and saturable binding of 125I-labeled acetylated low density lipoprotein and mediated its chloroquine-dependent, presumably lysosomal, degradation. Although the broad polyanionic ligand-binding specificity of dSR-CI was similar to that of SR-A, their predicted protein sequences are not similar. dSR-CI is a 609-residue type I integral membrane protein containing several well-known sequence motifs, including two complement control protein (CCP) domains and somatomedin B, MAM, and mucin-like domains. Macrophage scavenger receptors apparently mediate important, well-conserved functions and may be pattern-recognition receptors that arose early in the evolution of host-defense mechanisms. Genetic and physiologic analysis of dSR-CI function in Drosophila should provide further insights into the roles played by scavenger receptors in host defense and development.
Resumo:
To study the binding specificity of Src homology 3 (SH3) domains, we have screened a mouse embryonic expression library for peptide fragments that interact with them. Several clones were identified that express fragments of proteins which, through proline-rich binding sites, exhibit differential binding specificity to various SH3 domains. Src-SH3-specific binding uses a sequence of 7 aa of the consensus RPLPXXP, in which the N-terminal arginine is very important. The SH3 domains of the Src-related kinases Fyn, Lyn, and Hck bind to this sequence with the same affinity as that of the Src SH3. In contrast, a quite different proline-rich sequence from the Btk protein kinase binds to the Fyn, Lyn, and Hck SH3 domains, but not to the Src SH3. Specific binding of the Abl SH3 requires a longer, more proline-rich sequence but no arginine. One clone that binds to both Src and Abl SH3 domains through a common site exhibits reversed binding orientation, in that an arginine indispensable for binding to all tested SH3 domains occurs at the C terminus. Another clone contains overlapping yet distinct Src and Abl SH3 binding sites. Binding to the SH3 domains is mediated by a common PXXP amino acid sequence motif present on all ligands, and specificity comes about from other interactions, often ones involving arginine. The rules governing in vivo usage of particular sites by particular SH3 domains are not clear, but one binding orientation may be more specific than another.
Resumo:
The PDF1.2 gene of Arabidopsis encoding a plant defensin is commonly used as a marker for characterization of the jasmonate-dependent defense responses. Here, using PDF1.2 promoter-deletion lines linked to the beta-glucoronidase-reporter gene, we examined putative promoter elements associated with jasmonate-responsive expression of this gene. Using stably transformed plants, we first characterized the extended promoter region that positively regulates basal expression from the PDF1.2 promoter. Second, using promoter deletion constructs including one from which the GCC-box region was deleted, we observed a substantially lower response to jasmonate than lines carrying this motif. In addition, point mutations introduced into the core GCC-box sequence substantially reduced jasmonate responsiveness, whereas addition of a 20-nucleotide-long promoter element carrying the core GCC-box and flanking nucleotides provided jasmonate responsiveness to a 35S minimal promoter. Taken together, these results indicated that the GCC-box plays a key role in conferring jasmonate responsiveness to the PDF1.2 promoter. However, deletion or specific mutations introduced into the core GCC-box did not completely abolish the jasmonate responsiveness of the promoter, suggesting that the other promoter elements lying downstream from the GCC-box region may also contribute to jasmonate responsiveness. In other experiments, we identified a jasmonate- and pathogen-responsive ethylene response factor transcription factor, AtERF2, which when overexpressed in transgenic Arabidopsis plants activated transcription from the PDF1.2, Thi2.1, and PR4 (basic chitinase) genes, all of which contain a GCC-box sequence in their promoters. Our results suggest that in addition to their roles in regulating ethylene-mediated gene expression, ethylene response factors also appear to play important roles in regulating jasmonate-responsive gene expression, possibly via interaction with the GCC-box.
Resumo:
A major problem in de novo design of enzyme inhibitors is the unpredictability of the induced fit, with the shape of both ligand and enzyme changing cooperatively and unpredictably in response to subtle structural changes within a ligand. We have investigated the possibility of dampening the induced fit by using a constrained template as a replacement for adjoining segments of a ligand. The template preorganizes the ligand structure, thereby organizing the local enzyme environment. To test this approach, we used templates consisting of constrained cyclic tripeptides, formed through side chain to main chain linkages, as structural mimics of the protease-bound extended beta-strand conformation of three adjoining amino acid residues at the N- or C-terminal sides of the scissile bond of substrates. The macrocyclic templates were derivatized to a range of 30 structurally diverse molecules via focused combinatorial variation of nonpeptidic appendages incorporating a hydroxyethylamine transition-state isostere. Most compounds in the library were potent inhibitors of the test protease (HIV-1 protease). Comparison of crystal structures for five protease-inhibitor complexes containing an N-terminal macrocycle and three protease-inhibitor complexes containing a C-terminal macrocycle establishes that the macrocycles fix their surrounding enzyme environment, thereby permitting independent variation of acyclic inhibitor components with only local disturbances to the protease. In this way, the location in the protease of various acyclic fragments on either side of the macrocyclic template can be accurately predicted. This type of templating strategy minimizes the problem of induced fit, reducing unpredictable cooperative effects in one inhibitor region caused by changes to adjacent enzyme-inhibitor interactions. This idea might be exploited in template-based approaches to inhibitors of other proteases, where a beta-strand mimetic is also required for recognition, and also other protein-binding ligands where different templates may be more appropriate.
Resumo:
Nedd4 and Nedd4-2 are ubiquitin-protein ligases known to regulate a number of membrane proteins including receptors and ion transporters. Regulation of the epithelial Na+ channel by Nedd4 and Nedd4-2 is mediated via interactions between the PY motifs of the epithelial sodium channel subunits and the Nedd4/Nedd4-2 WW domains. This example serves as a model for the regulation of other PY motif-containing ion channels by Nedd4 and Nedd4-2. We found that the carboxyl termini of the six voltage-gated Na+ (Na-v) channels contain typical PY motifs (PPXY), and a further Na-v contains a PY motif variant (LPXY). Not only did we demonstrate by Far-Western analysis that Nedd4 and Nedd4-2 interact with the PY motif-containing Na-v channels, but we also showed that these channels have conserved WW domain binding specificity. We further showed that the carboxyl termini fusion proteins of one central nervous system and one peripheral nervous system-derived Na+ channel (Na(v)1.2 and Na(v)1.7, respectively) are readily ubiquitinated by Nedd4-2. In Xenopus oocytes, Nedd4-2 strongly inhibited the activities of all three Na(v)s (Na(v)1.2, Na(v)1.7, and Na(v)1.8) tested. Interestingly, Nedd4 suppressed the activity of Na(v)1.2 and Na(v)1.7 but was a poor inhibitor of Na(v)1.8. Our results provide evidence that Nedd4 and Nedd4-2 are likely to be key regulators of specific neuronal Na-v channels in vivo.
Resumo:
The high-affinity ligand-binding form of unactivated steroid receptors exists as a multicomponent complex that includes heat shock protein (Hsp)90; one of the immunophilins cyclophilin 40 (CyP40), FKBP51, or FKBP52; and an additional p23 protein component. Assembly of this heterocomplex is mediated by Hsp70 in association with accessory chaperones Hsp40, Hip, and Hop. A conserved structural element incorporating a tetratricopeptide repeat (TPR) domain mediates the interaction of the immunophilins with Hsp90 by accommodating the C-terminal EEVD peptide of the chaperone through a network of electrostatic and hydrophobic interactions. TPR cochaperones recognize the EEVD structural motif common to both Hsp90 and Hsp70 through a highly conserved clamp domain. In the present study, we investigated in vitro the molecular interactions between CyP40 and FKBP52 and other stress-related components involved in steroid receptor assembly, namely Hsp70 and Hop. Using a binding protein-retention assay with CyP40 fused to glutathione S-transferase immobilized on glutathione-agarose, we have identified the constitutively expressed form of Hsp70, heat shock cognate (Hsc)70, as an additional target for CyP40. Deletion mapping studies showed the binding determinants to be similar to those for CyP40-Hsp90 interaction. Furthermore, a mutational analysis of CyP40 clamp domain residues confirmed the importance of this motif in CyP40-Hsc70 interaction. Additional residues thought to mediate binding specificity through hydrophobic interactions were also important for Hsc70 recognition. CyP40 was shown to have a preference for Hsp90 over Hsc70. Surprisingly, FKBP52 was unable to compete with CyP40 for Hsc70 binding, suggesting that FKBP52 discriminates between the TPR cochaperone-binding sites in Hsp90 and Hsp70. Hop, which contains multiple units of the TPR motif, was shown to be a direct competitor with CyP40 for Hsc70 binding. Similar to Hop, CyP40 was shown not to influence the adenosine triphosphatase activity of Hsc70. Our results suggest that CyP40 may have a modulating role in Hsc70 as well as Hsp90 cellular function.