992 resultados para basal-like tumors
Resumo:
BACKGROUND: Insulin-like growth factor-I (IGF-I) and C-reactive protein (CRP) may be positively associated with the risk of epithelial ovarian cancer (EOC) but no previous studies have investigated their associations with non-epithelial ovarian cancers (NEOC). METHODS: A case-control study was nested within the Finnish Maternity Cohort. Case subjects were 58 women diagnosed with sex cord-stromal tumors (SCST) and 30 with germ cell tumors (GCT) after recruitment. Control subjects (144 for SCST and 74 for GCT) were matched for age, parity, and date of blood donation of the index case. RESULTS: Doubling of IGF-I concentration was not related to maternal risk of either SCST (OR 0.97, 95% CI 0.58-1.62) or GCT (OR 1.13, 95% CI 0.51-2.51). Similarly, doubling of CRP concentrations was not related to maternal risk of either SCST (OR 1.10, 95% CI 0.85-1.43) or GCT (OR 0.93, 95% CI 0.68-1.28). CONCLUSIONS: Pre-diagnostic IGF-I and CRP concentrations during the first trimester of pregnancy were not associated with increased risk of NEOC in the mother. Risk factors for NEOC may differ from those of EOC.
Resumo:
Floral bilateral symmetry (zygomorphy) has evolved several times independently in angiosperms from radially symmetrical (actinomorphic) ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc) have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like) lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture.
Resumo:
Initiation and progression of most colorectal cancers (CRCs) are driven by hyper-activation of the canonical Wnt/ß-catenin/TCF signaling pathway. However, a basal level of activation of this pathway is necessary for intestinal cell homeostasis; thus only CRC-specific effectors of this pathway could be exploited as potential clinical targets. PROX1 is an evolutionary conserved transcription factor with multiple roles in several tissues in embryogenesis, and increasing relevance in cancer. PROX1 is a colon cancer-specific Wnt target in the intestine, thus it might represent a therapeutic target. The role of PROX1 in promoting the transition from early to highly-dysplastic adenoma was previously described [1], Importantly, tumor metastasis is a leading cause of cancer-related mortality. Frequently, micrometastases are already present in patients at the time of diagnosis, therefore better understanding of the mechanisms regulating growth of macrometastatic lesions is important for the development of novel treatment approaches. In this study we showed that PROX1 is expressed in colon cancer stem cell and promotes the outgrowth of metastatic lesions. Firstly, we analyzed the expression of PROX1 in advanced CRCs and their metastases. We found that PROX1 over-expression is a feature of microsatellite stable tumors (~85% of microsatellite stable (MSS) CRCs), which generally have worse prognosis in comparison to microsatellite unstable CRCs. Analysis of primary CRCs and corresponding metastatic lesions showed that PROX1 expression is conserved, or increased in metastases. Further bioinformatics analysis of tumor and metastases gene expression profiles showed that PROX1 is co- expressed with stem cell and progenitor markers. Moreover, in inducible ApcmLgr5-EGFP-lres-CreERT2 model, Prox1+ cells marked a sub-population of Lgr5+ stem cells and subsequent transient amplifying cell population. Orthotopic model of CRC and lung colonization assays in mice demonstrated that PROX1 promotes tumor cell outgrowth in metastatic lesions, while it has no effect on primary tumor growth, invasion, and survival in circulation or cell extravasation. In vitro, PROX1 expressing tumor cells demonstrated strongly increased capacity to form spheroids, and increased survival and proliferation under hypoxic or nutrient-deprivation conditions. By monitoring cellular respiration under these conditions, we found that PROX1 expressing cells exhibit a better metabolic adaptation to changes in fuel source. Autophagy inhibitors, prevented growth both in vitro and in vivo of PROX1 expressing cells. Importantly, conditional inactivation of PROX1 after the establishment of metastases prevented further growth of macroscopic lesions resulting in stable disease. In summary, we identified a novel mechanism underlying the ability of metastatic colon cancer stem and progenitor cells to survive and grow in target organs through metabolic adaptation. Our results establish PROX1 as a key factor of CRC metastatic disease where it promotes survival of metastatic colon cancer stem-like cells, through their metabolic adaptation in sub-optimal microenvironments - L'initiation et la progression de la plupart des cancers colorectaux (CRC) sont entraînées par une hyper-activation de la voie métabolique Wnt/ß- caténine/TCF. Toutefois, un niveau d'activation minimal de Wnt est nécessaire pour l'homéostasie des cellules intestinales ; ainsi seuls des effecteurs spécifiques du CRC- de cette voie pourraient être exploités comme des cibles cliniques potentielles. PROX1 est un facteur de transcription évolutif conservé avec de multiples rôles dans plusieurs tissus durant l'embryogenèse et une pertinence croissante dans le cancer. PROX1 est une cible Wnt spécifique dans le cancer de l'intestin, donc il pourrait représenter une cible thérapeutique. Le rôle de PROX1 durant l'évolution de la maladie d'un stade précoce jusqu'à l'adénome hautement dysplasique a été décrit précédemment. Surtout, la métastase des tumeurs est une cause majeure de mortalité liée au cancer. Souvent, les micro-métastases sont déjà présentes chez les patients au moment du diagnostic, c'est pourquoi une meilleure compréhension des mécanismes régulant la croissance des lésions macrométastatiques est importante pour le développement de nouvelles approches thérapeutiques. Dans cette étude, nous avons prouvé que PROX1 est exprimé dans les cellules souches du cancer du côlon et favorise l'apparition de lésions métastatiques. Nous avons d'abord analysé l'expression de PROX1 dans des CRC avancés ainsi que dans leurs métastases. Nous avons constaté que la surexpression de PROX1 est une caractéristique des tumeurs stables microsatellites (~85% du MSS CRC), qui ont généralement un pronostic défavorable par rapport aux microsatellites CRC instables. L'analyse des CRC primaires et de leurs métastases liées a montré que l'expression de PROX1 est conservée, voire augmentée dans les métastases. A l'aide d'une base de données de tumeurs et métastases, nous avons observé une co- régulation de PROX1 entre cellules souches et marqueurs de progéniteurs mais pas avec des cellules différenciées. De plus, en utilisant un modèle Apcm Lgr5-EGFP-IRES-CreERT2 inductible, les cellules Prox1+ ont marqué une sous-population de cellules LGR& capable de produire une lignée. Un modèle orthotopique de cancer colorectal et des essais de colonisation du poumon chez la souris ont démontré que PROX1 favorise l'excroissance des cellules tumorales dans les lésions métastatiques, alors qu'il n'a aucun effet sur la croissance tumorale primaire, l'invasion ou une extravasation des cellules. In vitro, les cellules tumorales exprimant PROX1 ont démontré une forte augmentation de leur capacité à former des sphéroïdes, ainsi qu'une augmentation de la survie et de la prolifération dans des conditions hypoxiques ou lors de privation de nutriments. En contrôlant la respiration cellulaire dans ces conditions, nous avons constaté que les cellules exprimant PROX1 présentent une meilleure adaptation métabolique à l'évolution des sources de carburant. Des inhibiteurs de l'autophagie, suggérant une approche thérapeutique potentielle, ont tué à la fois in vitro et in vivo les cellules exprimant PROX1. Surtout, l'inactivation conditionnelle de PROX1 après l'apparition de métastases a empêché la croissance des lésions macroscopiques résultant en une maladie stable. En résumé, nous avons identifié un nouveau mécanisme mettant en évidence la capacité des cellules souches du cancer du côlon métastatique à survivre et à se développer dans les organes cibles grâce à l'adaptation métabolique. Nos résultats définissent PROX1 comme un facteur clé du cancer colorectal métastatique en favorisant la survie des cellules souches métastatiques apparentées au cancer du colon grâce à leur adaptation métabolique aux microenvironnements défavorables.
Resumo:
Tumors are often compared to wounds that do not heal, where the crosstalk between tumor cells and their surrounding stroma is crucial at all stages of development, from the initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts, also referred to as "cancer-associated fibroblasts" (CAFs), primarily, but not exclusively, in response to transforming growth factor-ß (TGF-ß). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases (MMPs), and MMP-g in particular, play a prominent role. However, the mechanisms that regulate MMP-g activation and function remain poorly understood. Recent evidence indicates that tumor cell surface association of MMP-g is an important event in its activation, and more generally in tumor growth and invasion. In the present work we address the potential association of MMP-g activity with cell-surface recruitment to human fibroblasts. We show for the first time that recruitment of MMP-g to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) domain, shared only by MMP-g and MMP-2 among all the MMPs. Functional assays suggest that both the pro- and active form of MMP-g trigger a-smooth muscle actin (aSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, possibly through TGF-ß activation. Moreover, the FN domain of MMP-g inhibits both MMP-g-induced TGF-ß activation and aSMA expression by sequestering MMP-g. Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast adenocarcinoma cells stably expressing the FN domain of MMP-g revealed no changes in primary tumor growth. However, in the context of metastasis, expression of the FN domain by these same tumor cells dramatically increased their metastatic proclivity whereas expression of wt MMP-g either promoted no change or actually reduced the number of metastases. We observed a decrease of an active form of MMP-g in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may inhibit MMP-g activity in Tumors are often compared to wounds that do not heal, where the crosstalk between tumor cells and their surrounding stroma is crucial at all stages of development, from the initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts, also referred to as "cancer-associated fibroblasts" (CAFs), primarily, but not exclusively, in response to transforming growth factor-ß (TGF-ß). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases (MMPs), and MMP-g in particular, play a prominent role. However, the mechanisms that regulate MMP-g activation and function remain poorly understood. Recent evidence indicates that tumor cell surface association of MMP-g is an important event in its activation, and more generally in tumor growth and invasion. In the present work we address the potential association of MMP-g activity with cell-surface recruitment to human fibroblasts. We show for the first time that recruitment of MMP-g to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) domain, shared only by MMP-g and MMP-2 among all the MMPs. Functional assays suggest that both the pro- and active form of MMP-g trigger a-smooth muscle actin (aSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, possibly through TGF-ß activation. Moreover, the FN domain of MMP-g inhibits both MMP-g-induced TGF-ß activation and aSMA expression by sequestering MMP-g. Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast adenocarcinoma cells stably expressing the FN domain of MMP-9 revealed no changes in primary tumor growth. However, in the context of metastasis, expression of the FN domain by these same tumor cells dramatically increased their metastatic proclivity whereas expression of wt MMP-g either promoted no change or actually reduced the number of metastases. We observed a decrease of an active form of MMP-9 in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may inhibit MMP-9 activity in those cells and therefore prevent MMP-9-induced activation of TGF-b, which results in increased invasion. Curiously, xenografts of SW480 colorectal adenocarcinoma cells stably expressing the FN domain of MMP-9 displayed reduced growth at both the primary (subcutaneous) injection site and the lungs of NOD/SCID mice, in experimental metastasis assays, whilst the same cells overexpressing wt MMP-9 showed enhanced growth and dissemination. Gelatin zymography of conditioned medium revealed that these effects may be due to the FN domain, which displaces MMP-9 from SW480 cell surface. These observations suggest a dual role of MMP-9 and its FN domain in primary tumor growth and metastasis, underscoring the notion that the effect of MMP-9 on tumor cells may depend on the cell type and highlighting possible protective effects of MMPs in tumor progression.
Resumo:
How the apical-basal axis of polarity is established in embryogenesis is still a mystery in plant development. This axis appeared specifically compromised by mutations in the Arabidopsis GNOM gene. Surprisingly, GNOM encodes an ARF guanine-nucleotide exchange factor (ARF-GEF) that regulates the formation of vesicles in membrane trafficking. In-depth functional analysis of GNOM and its closest relative, GNOM-LIKE 1 (GNL1), has provided a mechanistic explanation for the development-specific role of a seemingly mundane trafficking regulator. The current model proposes that GNOM is specifically involved in the endosomal recycling of the auxin-efflux carrier PIN1 to the basal plasma membrane in provascular cells, which in turn is required for the accumulation of the plant hormone auxin at the future root pole through polar auxin transport. Thus, the analysis of GNOM highlights the importance of cell-biological processes for a mechanistic understanding of development.
Insulin and insulin-like growth factor I receptors utilize different G protein signaling components.
Resumo:
We examined the role of heterotrimeric G protein signaling components in insulin and insulin-like growth factor I (IGF-I) action. In HIRcB cells and in 3T3L1 adipocytes, treatment with the Galpha(i) inhibitor (pertussis toxin) or microinjection of the Gbetagamma inhibitor (glutathione S-transferase-betaARK) inhibited IGF-I and lysophosphatidic acid-stimulated mitogenesis but had no effect on epidermal growth factor (EGF) or insulin action. In basal state, Galpha(i) and Gbeta were associated with the IGF-I receptor (IGF-IR), and after ligand stimulation the association of IGF-IR with Galpha(i) increased concomitantly with a decrease in Gbeta association. No association of Galpha(i) was found with either the insulin or EGF receptor. Microinjection of anti-beta-arrestin-1 antibody specifically inhibited IGF-I mitogenic action but had no effect on EGF or insulin action. beta-Arrestin-1 was associated with the receptors for IGF-I, insulin, and EGF in a ligand-dependent manner. We demonstrated that Galpha(i), betagamma subunits, and beta-arrestin-1 all play a critical role in IGF-I mitogenic signaling. In contrast, neither metabolic, such as GLUT4 translocation, nor mitogenic signaling by insulin is dependent on these protein components. These results suggest that insulin receptors and IGF-IRs can function as G protein-coupled receptors and engage different G protein partners for downstream signaling.
Resumo:
AKAP-Lbc is a member of the A-kinase anchoring protein (AKAP) family that has been recently associated with the development of pathologies, such as cardiac hypertrophy and cancer. We have previously demonstrated that, at the molecular level, AKAP-Lbc functions as a guanine nucleotide exchange factor (GEF) that promotes the specific activation of RhoA. In the present study, we identified the ubiquitin-like protein LC3 as a novel regulatory protein interacting with AKAP-Lbc. Mutagenesis studies revealed that LC3, through its NH(2)-terminal alpha-helical domain, interacts with two binding sites located within the NH(2)-terminal regulatory region of AKAP-Lbc. Interestingly, LC3 overexpression strongly reduced the ability of AKAP-Lbc to interact with RhoA, profoundly impairing the Rho-GEF activity of the anchoring protein and, as a consequence, its ability to promote cytoskeletal rearrangements associated with the formation of actin stress fibers. Moreover, AKAP-Lbc mutants that fail to interact with LC3 show a higher basal Rho-GEF activity as compared with the wild type protein and become refractory to the inhibitory effect of LC3. This suggests that LC3 binding maintains AKAP-Lbc in an inactive state that displays a reduced ability to promote downstream signaling. Collectively, these findings provide evidence for a previously uncharacterized role of LC3 in the regulation of Rho signaling and in the reorganization of the actin cytoskeleton.
Resumo:
TLR4 (Toll-like receptor 4) is essential for sensing the endotoxin of Gram-negative bacteria. Mutations or deletion of the TLR4 gene in humans or mice have been associated with altered predisposition to or outcome of Gram-negative sepsis. In the present work, we studied the expression and regulation of the Tlr4 gene of mouse. In vivo, TLR4 levels were higher in macrophages compared with B, T or natural killer cells. High basal TLR4 promoter activity was observed in RAW 264.7, J774 and P388D1 macrophages transfected with a TLR4 promoter reporter vector. Analysis of truncated and mutated promoter constructs identified several positive [two Ets (E twenty-six) and one AP-1 (activator protein-1) sites] and negative (a GATA-like site and an octamer site) regulatory elements within 350 bp upstream of the transcriptional start site. The myeloid and B-cell-specific transcription factor PU.1 bound to the proximal Ets site. In contrast, none among PU.1, Ets-1, Ets-2 and Elk-1, but possibly one member of the ESE (epithelium-specific Ets) subfamily of Ets transcription factors, bound to the distal Ets site, which was indispensable for Tlr4 gene transcription. Endotoxin did not affect macrophage TLR4 promoter activity, but it decreased TLR4 steady-state mRNA levels by increasing the turnover of TLR4 transcripts. TLR4 expression was modestly altered by other pro- and anti-inflammatory stimuli, except for PMA plus ionomycin which strongly increased promoter activity and TLR4 mRNA levels. The mouse and human TLR4 genes were highly conserved. Yet, notable differences exist with respect to the elements implicated in gene regulation, which may account for species differences in terms of tissue expression and modulation by microbial and inflammatory stimuli.
Resumo:
Intensive research is devoted to unravel the neurobiological mechanisms mediating adult hippocampal neurogenesis, its regulation by antidepressants, and its behavioral consequences. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that is expressed in the CNS, where its function is unknown. Here, we show, for the first time, the relevance of MIF expression for adult hippocampal neurogenesis. We identify MIF expression in neurogenic cells (in stem cells, cells undergoing proliferation, and in newly proliferated cells undergoing maturation) in the subgranular zone of the rodent dentate gyrus. A causal function for MIF in cell proliferation was shown using genetic (MIF gene deletion) and pharmacological (treatment with the MIF antagonist Iso-1) approaches. Behaviorally, genetic deletion of MIF resulted in increased anxiety- and depression-like behaviors, as well as of impaired hippocampus-dependent memory. Together, our studies provide evidence supporting a pivotal function for MIF in both basal and antidepressant-stimulated adult hippocampal cell proliferation. Moreover, loss of MIF results in a behavioral phenotype that, to a large extent, corresponds with alterations predicted to arise from reduced hippocampal neurogenesis. These findings underscore MIF as a potentially relevant molecular target for the development of treatments linked to deficits in neurogenesis, as well as to problems related to anxiety, depression, and cognition.
Resumo:
Fibroblastic and myofibroblastic tumors of the head and neck are numerous and may develop either in adults or in childhood. They can be benign and nonrecurring, benign but locally recurring, of low-grade of malignancy or fully malignant. The diagnosis and treatment of these lesions can be difficult. This review focuses on several (myo)fibroblastic lesions of the head and neck, including nodular fasciitis and related neoplasms, hemangiopericytoma-like tumor (glomangiopericytoma) of sinonasal passages, nasopharyngeal angiofibroma, desmoid fibromatosis, Gardner-associated fibroma, extrapleural solitary fibrous tumor, inflammatory myofibroblastic tumor, low-grade myofibroblastic sarcoma, and adult-type fibrosarcoma.
Resumo:
The therapeutic efficacy of anticancer chemotherapies may depend on dendritic cells (DCs), which present antigens from dying cancer cells to prime tumor-specific interferon-gamma (IFN-gamma)-producing T lymphocytes. Here we show that dying tumor cells release ATP, which then acts on P2X(7) purinergic receptors from DCs and triggers the NOD-like receptor family, pyrin domain containing-3 protein (NLRP3)-dependent caspase-1 activation complex ('inflammasome'), allowing for the secretion of interleukin-1beta (IL-1beta). The priming of IFN-gamma-producing CD8+ T cells by dying tumor cells fails in the absence of a functional IL-1 receptor 1 and in Nlpr3-deficient (Nlrp3(-/-)) or caspase-1-deficient (Casp-1(-/-)) mice unless exogenous IL-1beta is provided. Accordingly, anticancer chemotherapy turned out to be inefficient against tumors established in purinergic receptor P2rx7(-/-) or Nlrp3(-/-) or Casp1(-/-) hosts. Anthracycline-treated individuals with breast cancer carrying a loss-of-function allele of P2RX7 developed metastatic disease more rapidly than individuals bearing the normal allele. These results indicate that the NLRP3 inflammasome links the innate and adaptive immune responses against dying tumor cells.
Resumo:
Potentiation of glucose-induced insulin secretion by intestinal factors has been described for many years. Today, two major peptides with potent insulinotropic action have been recognized: gastric inhibitory peptide and truncated forms of glucagon-like peptide I, GLP-I(7-37) or the related GLP-I(7-36)amide. These hormones have specific beta-cell receptors that are coupled to production of cAMP and activation of cAMP-dependent protein kinase. Elevation in intracellular cAMP levels is required to mediate the glucoincretin effect of these hormones: the potentiation of insulin secretion in the presence of stimulatory concentrations of glucose. In addition, circulating glucoincretins maintain basal levels of cAMP, which are necessary to keep beta-cells in a glucose-competent state. Interactions between glucoincretin signaling and glucose-induced insulin secretion may result from the phosphorylation of key elements of the glucose signaling pathway by cAMP-dependent protein kinase. These include the ATP-dependent K+ channel, the Ca++ channel, or elements of the secretory machinery itself. In NIDDM, the glucoincretin effect is reduced. However, basal or stimulated gastric inhibitory peptide and glucagon-like peptide I levels are normal or even elevated, suggesting that signals induced by these hormones on the beta-cells are probably altered. At pharmacological doses, infusion of glucagon-like peptide I but not gastric inhibitory peptide, can ameliorate postprandial insulin secretory response in NIDDM patients. Agonists of the glucagon-like peptide I receptor have been proposed as new therapeutic agents in NIDDM.
Resumo:
Papillary cystadenoma lymphomatosum is a benign salivary gland tumor most frequently located in the parotid gland (Warthin"s tumor). Its presentation in other major, or in minor, salivary glands is rare. Clinically, it manifests as a slow growing tumor, fluctuant on palpation due to its cystic morphology. The treatment of choice is complete excision with wide tumor-free margins. We present a 73-year-old female patient with an asymptomatic tumor of 8 years evolution in the right posterior area of the hard palate. We performed surgical excision and a biopsy, which was reported as papillary cystadenoma lymphomatosum. During the post-operative examination carried out after 3 weeks, it was observed that the lesion had recurred. The lesion was re-operated, performing the excision with CO2 laser and including the periosteum to ensure complete resection of the tumor. At 10 months follow-up, there was no recurrence of the lesion. This article includes a review of this condition and discusses its most important clinical and pathologic features and therapeutic approaches.
Resumo:
PURPOSE: The immunomodulatory properties of Toll-like receptors (TLR) agonists have inspired their use as experimental adjuvants for vaccination of cancer patients. However, it is now well recognized that TLR expression is not restricted to immune cells but can also be found in many cell types, including those giving rise to tumors. It is therefore mandatory to explore the potential effects of TLR triggering directly on tumor cells. EXPERIMENTAL DESIGN: In the present work, we have investigated TLR3 protein expression in melanoma cell lines derived from patients, and analyzed the effects of TLR3 agonists on tumor cell survival. Moreover, we used RNA interference to stably knock down TLR3 expression and study the involvement of this receptor in dsRNA-induced effects on melanoma cells viability. RESULTS: Human melanoma cells can express functional TLR3 protein. Interestingly, the engagement of the receptor by TLR3 agonists can directly inhibit cell proliferation and induce tumor cell death when combined to treatment with either type I IFN or protein synthesis inhibitors. These effects were shown by RNA interference to be largely dependent on TLR3. Moreover, TLR3-mediated cell death involves the activation of caspases and engages both extrinsic and intrinsic apoptotic pathways. CONCLUSION: TLR3 protein can be expressed in human melanoma cells, where it can deliver proapoptotic and antiproliferative signaling. Altogether, these results suggest that TLR3 agonists represent very promising adjuvants for cancer vaccines not only based on their well-described immunostimulatory properties, but also due to their newly identified cytostatic and cytotoxic effects directly on tumor cells.
Resumo:
Introduction: Minor salivary gland tumors (MSGTs) are infrequent, representing 10-15% of all salivary neoplasms. Despite this low frequency, MSGTs conform a heterogeneous group of neoplasms characterized by a broad range of histological types. Patients and method: We identified cases of MSGT in a retrospective study of the biopsies made in the period 1997-2007 in the Service of Oral Surgery (Dental Clinic of the University of Barcelona, Spain). The data collected comprised patient age and sex, the clinical characteristics and location of the tumor, the duration of the lesion, its size, the treatment provided, and the histopathological findings. Results: Of the 18 cases of MSGT studied, 12 corresponded to women (66.7%) and 6 to men (33.3%). The great majority (94.4%) were benign tumors. The preferential location was the posterior third of the hard palate (33.2%), followed by the soft palate (16.7%) and the mucosa of the upper lip (16.7%). The histopathological diagnoses of our MSGTs comprised 10 pleomorphic adenomas (55.3%), 2 cystadenomas (11.1%), 1 myoepithelioma (5.6%), 1 sialadenoma papilliferum (5.6%), 1 basal cell adenoma (5.6%), 1 Warthin"s tumor (5.6%), 1 canalicular adenoma (5.6%), and 1 low-grade polymorphic adenocarcinoma (5.6%). Discussion and conclusions: Coinciding with our own results, the literature describes a high recurrence rate for MSGTs (5-30%) when surgical removal is incomplete. Six percent of all benign minor salivary gland tumors are considered to relapse, versus 65% of all malignant lesions. Periodic clinical controls are required, since the possibility of malignant transformation must be taken into account