976 resultados para background deep sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deep sea is Earth’s largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at Pacific Ocean methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over two years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes’ intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. marisprofundi targets the host’s body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep sea biosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of supporting, provisioning, regulating and cultural services becomes apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses that are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary for fueling surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a wealth of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown that has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and timescales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, which covers the majority of the globe, harbour processes that directly impact humans in a variety of ways; however, the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society. In this manuscript we aim to provide a foundation for informed conservation and management of the deep sea by summarizing the important role of the deep sea in society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since strong regional warming has led to the disintegration of huge parts of the Larsen A and B ice shelves east of the Antarctic Peninsula in 1995 and 2002, meiofaunal communities covered by ice shelves for thousands of years could be investigated for the first time. Based on a dataset of more than 230,000 individuals, meiobenthic higher taxa diversity and composition of Larsen continental shelf stations were compared to those of deep-sea stations in the Western Weddell Sea to see whether the food-limiting conditions in the deep sea and the food-poor shelf regime at times of iceshelf coverage has resulted in similar meiobenthic communities, on the premises that food availability is the main driver of meiobenthic assemblages. We show here that this is indeed the case; in terms of meiobenthic communities, there is greater similarity between the deep sea and the inner Larsen embayments than there is similarity between the deep sea and the former Larsen B iceshelf edge and the open continental shelf. We also show that resemblance to Antarctic deep-sea meiofaunal communities was indeed significantly higher for communities of the innermost Larsen B area than for those from intermediate parts of Larsen A and B. Similarity between communities from intermediate parts and the deep sea was again higher than between those of the ice-edge and the open shelf. Meiofaunal densities were low at the inner parts of Larsen A and B, and comparable to deep-sea densities, again likely owing to the low food supply at both habitats. We suggest that meiobenthic communities have not yet recovered from the food-limiting conditions present at the time of iceshelf coverage. Meiofaunal diversity on the other hand seemed driven by sediment structure, being higher in coarser sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time, bacterial symbiosis is recognized in the bivalve family Montacutidae of the superfamily Galeommatoidea. The ctenidial filaments of Syssitomya pourtalesiana Oliver, 2012 are extended abfrontally and a dense layer of bacteriocyte cells cover the entire surface behind a narrow ciliated frontal zone. The bacteria are extracellular and held within a matrix of epithelial extensions and microvilli. There is no cuticular layer (glycocalyx) covering the bacteria as in many thyasirid symbioses. The bacteriocytes hold more than one morphotype of bacteria, but bacilli, 1–3 μm in length, dominate. Scanning electron microscopy observations show a surface mat of filamentous bacteria over the extreme abfrontal surfaces. Filter feeding was confirmed by the presence of food particles in the stomach and the bivalve is presumed to be mixotrophic. Syssitomya is commensal and lives attached to the anal spines of the deep-sea echinoid Pourtalesia. In this position, echinoid feeding currents and echinoid faecal material may supply the bacteria with a variety of nutrient materials including dissolved organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coleoid cephalopods show flexibility in their reproductive strategies or mode of spawning, which can range from simultaneous terminal spawning over a short period at the end of the animal’s life to continuous spawning over a long period of the animal’s life. Although a simultaneous terminal spawning strategy is typical of shallow water temperate octopuses, it is not known whether deep-sea octopods would have the same reproductive strategy. The reproductive strategies and fecundity were investigated in nine species of deep-sea incirrate octopuses: Bathypolypus arcticus, Bathypolypus bairdii, Bathypolypus ergasticus, Bathypolypus sponsalis, Bathypolypus valdiviae, Benthoctopus levis, Benthoctopus normani, Benthoctopus sp., and Graneledone verrucosa (total n = 85). Egg-length frequency graphs and multivariate analysis (principal components analysis) suggest that B. sponsalis has a synchronous ovulation pattern and therefore a simultaneous terminal spawning strategy. Although a simultaneous terminal spawning strategy is most likely for B. levis and B. normani, the egg-length frequency graphs and multivariate analysis also suggest a greater variation in egglengths which could lead to spawning over an extended period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A long-synonymized species Benthoctopus normani (Massy 1907) (Cephalopoda: Octopodidae) is redescribed from material collected over 30 years by the National Oceanography Centre, Southampton and the National Museums of Scotland. It can be distinguished from other octopodid specimens found in deep waters of the Northeast Atlantic by its biserial suckers, lack of ink sac, and simple ligula, which lacks transverse ridges. Examination of the collections led to the identification of a new species of Benthoctopus from the Northeast Atlantic, which is described herein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how environmental forcing has generated and maintained large-scale patterns of biodiversity is a key goal of evolutionary research and critical to predicting the impacts of global climate change. We suggest that the initiation of the global thermohaline circulation provided a mechanism for the radiation of Southern Ocean fauna into the deep sea. We test this hypothesis using a relaxed phylogenetic approach to coestimate phylogeny and divergence times for a lineage of octopuses with Antarctic and deep-sea representatives. We show that the deep-sea lineage had their evolutionary origins in Antarctica, and estimate that this lineage diverged around 33?million years ago (Ma) and subsequently radiated at 15?Ma. Both of these dates are critical in development of the thermohaline circulation and we suggest that this has acted as an evolutionary driver enabling the Southern Ocean to become a centre of origin for deep-sea fauna. This is the first unequivocal molecular evidence that deep-sea fauna from other ocean basins originated from Southern Ocean taxa and this is the first evidence to be dated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epibiotic foraminifers selectively settle on the most food-rich area of the host substrate, even when the species acts as a facultative ectoparasite in later life stages. In 398 specimens examined of the deep-sea chiton Leptochiton arcticus from Iceland, 46% show evidence of infestation by foraminifers, with many showing extensive shell damage from present and past bioeroding epibionts. Disturbances to the inner layer of the host shell are indicative of parasitism, as evidenced both by wound healing calcification and protrusions of the foraminiferan tubules. The epibionts employ different feeding strategies at different stages of their life cycle, taking advantage of nutrient availability from the posterior respiration currents and excrement of the chitons as juveniles, and feeding parasitically as adults. Epibiont persistence on individual hosts-through successive generations, or long-term continuous bioerosion by epibionts-allow larger adult parasitic foraminifers of Hyrrokkin sarcophaga to penetrate the thick tail valve of a chiton and feed parasitically on the host tissue. The proportion of chitons infested increases with host size, indicating that epibionts are accumulated through a chiton's life, seemingly without major detriment to host survivorship.