885 resultados para autonomous intelligent systems


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multinodal load forecasting deals with the loads of several interest nodes in an electrical network system, which is also known as bus load forecasting. To perform this demand, it is necessary a technique that is precise, trustable and has a short-time processing. This paper proposes two methodologies based on general regression neural networks for short-term multinodal load forecasting. The first individually forecast the local loads and the second forecast the global load and individually forecast the load participation factors to estimate the local loads. To design the forecasters it wasn't necessary the previous study of the local loads. Tests were made using a New Zealand distribution subsystem and the results obtained are compatible with the ones founded in the specialized literature. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we propose an accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the Time Domains Reflectometry method for signal acquisition, which was further analyzed by OPF and several other well known pattern recognition techniques. The results indicated that OPF and Support Vector Machines outperformed Artificial Neural Networks classifier. However, OPF has been much more efficient than all classifiers for training, and the second one faster for classification. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an Advanced Traveler Information System (ATIS) developed on Android platform, which is open source and free. The developed application has as its main objective the free use of a Vehicle-to- Infrastructure (V2I) communication through the wireless network access points available in urban centers. In addition to providing the necessary information for an Intelligent Transportation System (ITS) to a central server, the application also receives the traffic data close to the vehicle. Once obtained this traffic information, the application displays them to the driver in a clear and efficient way, allowing the user to make decisions about his route in real time. The application was tested in a real environment and the results are presented in the article. In conclusion we present the benefits of this application. © 2012 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[EN]Many different complex systems depend on a large number n of mutually independent random Boolean variables. The most useful representation for these systems –usually called complex stochastic Boolean systems (CSBSs)– is the intrinsic order graph. This is a directed graph on 2n vertices, corresponding to the 2n binary n-tuples (u1, . . . , un) ∈ {0, 1} n of 0s and 1s. In this paper, different duality properties of the intrinsic order graph are rigorously analyzed in detail. The results can be applied to many CSBSs arising from any scientific, technical or social area…

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we propose a new benchmark to drive making decisions in maintenance of computer systems. This benchmark is made from load average sample data. The main goal is to improve reliability and performance of a set of devices or components. In particular, the stability of the system is measured in terms of variability of the load. A forecast of the behavior of this stability is also proposal as part of the reporting benchmark. At the final stage, a more stable system is obtained and its global reliability and performance can be then evaluated by means of appropriate specifications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-election of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested on decentralized solution where the robots themselves autonomously and in an individual manner, are responsible of selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-tasks distribution problem and we propose a solution using two different approaches by applying Ant Colony Optimization-based deterministic algorithms as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithm, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ntelligent systems designed to reduce highway fatalities have been widely applied in the automotive sector in the last decade. Of all users of transport systems, pedestrians are the most vulnerable in crashes as they are unprotected. This paper deals with an autonomous intelligent emergency system designed to avoid collisions with pedestrians. The system consists of a fuzzy controller based on the time-to-collision estimate – obtained via a vision-based system – and the wheel-locking probability – obtained via the vehicle’s CAN bus – that generates a safe braking action. The system has been tested in a real car – a convertible Citroën C3 Pluriel – equipped with an automated electro-hydraulic braking system capable of working in parallel with the vehicle’s original braking circuit. The system is used as a last resort in the case that an unexpected pedestrian is in the lane and all the warnings have failed to produce a response from the driver.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hoy en día, el desarrollo tecnológico en el campo de los sistemas inteligentes de transporte (ITS por sus siglas en inglés) ha permitido dotar a los vehículos con diversos sistemas de ayuda a la conducción (ADAS, del inglés advanced driver assistance system), mejorando la experiencia y seguridad de los pasajeros, en especial del conductor. La mayor parte de estos sistemas están pensados para advertir al conductor sobre ciertas situaciones de riesgo, como la salida involuntaria del carril o la proximidad de obstáculos en el camino. No obstante, también podemos encontrar sistemas que van un paso más allá y son capaces de cooperar con el conductor en el control del vehículo o incluso relegarlos de algunas tareas tediosas. Es en este último grupo donde se encuentran los sistemas de control electrónico de estabilidad (ESP - Electronic Stability Program), el antibloqueo de frenos (ABS - Anti-lock Braking System), el control de crucero (CC - Cruise Control) y los más recientes sistemas de aparcamiento asistido. Continuando con esta línea de desarrollo, el paso siguiente consiste en la supresión del conductor humano, desarrollando sistemas que sean capaces de conducir un vehículo de forma autónoma y con un rendimiento superior al del conductor. En este trabajo se presenta, en primer lugar, una arquitectura de control para la automatización de vehículos. Esta se compone de distintos componentes de hardware y software, agrupados de acuerdo a su función principal. El diseño de la arquitectura parte del trabajo previo desarrollado por el Programa AUTOPIA, aunque introduce notables aportaciones en cuanto a la eficiencia, robustez y escalabilidad del sistema. Ahondando un poco más en detalle, debemos resaltar el desarrollo de un algoritmo de localización basado en enjambres de partículas. Este está planteado como un método de filtrado y fusión de la información obtenida a partir de los distintos sensores embarcados en el vehículo, entre los que encontramos un receptor GPS (Global Positioning System), unidades de medición inercial (IMU – Inertial Measurement Unit) e información tomada directamente de los sensores embarcados por el fabricante, como la velocidad de las ruedas y posición del volante. Gracias a este método se ha conseguido resolver el problema de la localización, indispensable para el desarrollo de sistemas de conducción autónoma. Continuando con el trabajo de investigación, se ha estudiado la viabilidad de la aplicación de técnicas de aprendizaje y adaptación al diseño de controladores para el vehículo. Como punto de partida se emplea el método de Q-learning para la generación de un controlador borroso lateral sin ningún tipo de conocimiento previo. Posteriormente se presenta un método de ajuste on-line para la adaptación del control longitudinal ante perturbaciones impredecibles del entorno, como lo son los cambios en la inclinación del camino, fricción de las ruedas o peso de los ocupantes. Para finalizar, se presentan los resultados obtenidos durante un experimento de conducción autónoma en carreteras reales, el cual se llevó a cabo en el mes de Junio de 2012 desde la población de San Lorenzo de El Escorial hasta las instalaciones del Centro de Automática y Robótica (CAR) en Arganda del Rey. El principal objetivo tras esta demostración fue validar el funcionamiento, robustez y capacidad de la arquitectura propuesta para afrontar el problema de la conducción autónoma, bajo condiciones mucho más reales a las que se pueden alcanzar en las instalaciones de prueba. ABSTRACT Nowadays, the technological advances in the Intelligent Transportation Systems (ITS) field have led the development of several driving assistance systems (ADAS). These solutions are designed to improve the experience and security of all the passengers, especially the driver. For most of these systems, the main goal is to warn drivers about unexpected circumstances leading to risk situations such as involuntary lane departure or proximity to other vehicles. However, other ADAS go a step further, being able to cooperate with the driver in the control of the vehicle, or even overriding it on some tasks. Examples of this kind of systems are the anti-lock braking system (ABS), cruise control (CC) and the recently commercialised assisted parking systems. Within this research line, the next step is the development of systems able to replace the human drivers, improving the control and therefore, the safety and reliability of the vehicles. First of all, this dissertation presents a control architecture design for autonomous driving. It is made up of several hardware and software components, grouped according to their main function. The design of this architecture is based on the previous works carried out by the AUTOPIA Program, although notable improvements have been made regarding the efficiency, robustness and scalability of the system. It is also remarkable the work made on the development of a location algorithm for vehicles. The proposal is based on the emulation of the behaviour of biological swarms and its performance is similar to the well-known particle filters. The developed method combines information obtained from different sensors, including GPS, inertial measurement unit (IMU), and data from the original vehicle’s sensors on-board. Through this filtering algorithm the localization problem is properly managed, which is critical for the development of autonomous driving systems. The work deals also with the fuzzy control tuning system, a very time consuming task when done manually. An analysis of learning and adaptation techniques for the development of different controllers has been made. First, the Q-learning –a reinforcement learning method– has been applied to the generation of a lateral fuzzy controller from scratch. Subsequently, the development of an adaptation method for longitudinal control is presented. With this proposal, a final cruise control controller is able to deal with unpredictable environment disturbances, such as road slope, wheel’s friction or even occupants’ weight. As a testbed for the system, an autonomous driving experiment on real roads is presented. This experiment was carried out on June 2012, driving from San Lorenzo de El Escorial up to the Center for Automation and Robotics (CAR) facilities in Arganda del Rey. The main goal of the demonstration was validating the performance, robustness and viability of the proposed architecture to deal with the problem of autonomous driving under more demanding conditions than those achieved on closed test tracks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Autonomous systems require, in most of the cases, reasoning and decision-making capabilities. Moreover, the decision process has to occur in real time. Real-time computing means that every situation or event has to have an answer before a temporal deadline. In complex applications, these deadlines are usually in the order of milliseconds or even microseconds if the application is very demanding. In order to comply with these timing requirements, computing tasks have to be performed as fast as possible. The problem arises when computations are no longer simple, but very time-consuming operations. A good example can be found in autonomous navigation systems with visual-tracking submodules where Kalman filtering is the most extended solution. However, in recent years, some interesting new approaches have been developed. Particle filtering, given its more general problem-solving features, has reached an important position in the field. The aim of this thesis is to design, implement and validate a hardware platform that constitutes itself an embedded intelligent system. The proposed system would combine particle filtering and evolutionary computation algorithms to generate intelligent behavior. Traditional approaches to particle filtering or evolutionary computation have been developed in software platforms, including parallel capabilities to some extent. In this work, an additional goal is fully exploiting hardware implementation advantages. By using the computational resources available in a FPGA device, better performance results in terms of computation time are expected. These hardware resources will be in charge of extensive repetitive computations. With this hardware-based implementation, real-time features are also expected.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes ExperNet, an intelligent multi-agent system that was developed under an EU funded project to assist in the management of a large-scale data network. ExperNet assists network operators at various nodes of a WAN to detect and diagnose hardware failures and network traffic problems and suggests the most feasible solution, through a web-based interface. ExperNet is composed by intelligent agents, capable of both local problem solving and social interaction among them for coordinating problem diagnosis and repair. The current network state is captured and maintained by conventional network management and monitoring software components, which have been smoothly integrated into the system through sophisticated information exchange interfaces. For the implementation of the agents, a distributed Prolog system enhanced with networking facilities was developed. The agents’ knowledge base is developed in an extensible and reactive knowledge base system capable of handling multiple types of knowledge representation. ExperNet has been developed, installed and tested successfully in an experimental network zone of Ukraine.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The potential of integrating multiagent systems and virtual environments has not been exploited to its whole extent. This paper proposes a model based on grammars, called Minerva, to construct complex virtual environments that integrate the features of agents. A virtual world is described as a set of dynamic and static elements. The static part is represented by a sequence of primitives and transformations and the dynamic elements by a series of agents. Agent activation and communication is achieved using events, created by the so-called event generators. The grammar defines a descriptive language with a simple syntax and a semantics, defined by functions. The semantics functions allow the scene to be displayed in a graphics device, and the description of the activities of the agents, including artificial intelligence algorithms and reactions to physical phenomena. To illustrate the use of Minerva, a practical example is presented: a simple robot simulator that considers the basic features of a typical robot. The result is a functional simple simulator. Minerva is a reusable, integral, and generic system, which can be easily scaled, adapted, and improved. The description of the virtual scene is independent from its representation and the elements that it interacts with.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to survive in the increasingly customer-oriented marketplace, continuous quality improvement marks the fastest growing quality organization’s success. In recent years, attention has been focused on intelligent systems which have shown great promise in supporting quality control. However, only a small number of the currently used systems are reported to be operating effectively because they are designed to maintain a quality level within the specified process, rather than to focus on cooperation within the production workflow. This paper proposes an intelligent system with a newly designed algorithm and the universal process data exchange standard to overcome the challenges of demanding customers who seek high-quality and low-cost products. The intelligent quality management system is equipped with the ‘‘distributed process mining” feature to provide all levels of employees with the ability to understand the relationships between processes, especially when any aspect of the process is going to degrade or fail. An example of generalized fuzzy association rules are applied in manufacturing sector to demonstrate how the proposed iterative process mining algorithm finds the relationships between distributed process parameters and the presence of quality problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A key objective of autonomic computing is to reduce the cost and expertise required for the management of complex IT systems. As a growing number of these systems are implemented as hierarchies or federations of lower-level systems, techniques that support the development of autonomic systems of systems are required. This article introduces one such technique, which involves the run-time synthesis of autonomic system connectors. These connectors are specified by means of a new type of autonomic computing policy termed a resource definition policy, and enable the dynamic realisation of collections of collaborating autonomic systems, as envisaged by the original vision of autonomic computing. We propose a framework for the formal specification of autonomic computing policies, and use it to define the new policy type and to describe its application to the development of autonomic system of systems. To validate the approach, we present a sample data-centre application that was built using connectors synthesised from resource-definition policies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cognitive systems research involves the synthesis of ideas from natural and artificial systems in the analysis, understanding, and design of all intelligent systems. This chapter discusses the cognitive systems associated with the hippocampus (HC) of the human brain and their possible role in behaviour and neurodegenerative disease. The hippocampus (HC) is concerned with the analysis of highly abstract data derived from all sensory systems but its specific role remains controversial. Hence, there have been three major theories concerning its function, viz., the memory theory, the spatial theory, and the behavioral inhibition theory. The memory theory has its origin in the surgical destruction of the HC, which results in severe anterograde and partial retrograde amnesia. The spatial theory has its origin in the observation that neurons in the HC of animals show activity related to their location within the environment. By contrast, the behavioral inhibition theory suggests that the HC acts as a ‘comparator’, i.e., it compares current sensory events with expected or predicted events. If a set of expectations continues to be verified then no alteration of behavior occurs. If, however, a ‘mismatch’ is detected then the HC intervenes by initiating appropriate action by active inhibition of current motor programs and initiation of new data gathering. Understanding the cognitive systems of the hippocampus in humans may aid in the design of intelligent systems involved in spatial mapping, memory, and decision making. In addition, this information may lead to a greater understanding of the course of clinical dementia in the various neurodegenerative diseases in which there is significant damage to the HC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Methodology of computer-aided investigation and provision of safety for complex constructions and a prototype of the intelligent applied system, which implements it, are considered. The methodology is determined by the model of the object under scrutiny, by the structure and functions of investigation of safety as well as by a set of research methods. The methods are based on the technologies of object-oriented databases, expert systems and on the mathematical modeling. The intelligent system’s prototype represents component software, which provides for support of decision making in the process of safety investigations and investigation of the cause of failure. Support of decision making is executed by analogy, by determined search for the precedents (cases) with respect to predicted (on the stage of design) and observed (on the stage of exploitation) parameters of the damage, destruction and malfunction of a complex hazardous construction.