992 resultados para augmented Lagrangian method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adsorption of NO on transition-metal (TM) surfaces has been widely studied by experimental and theoretical techniques; however, our atomistic understanding of the interaction of nitrogen monoxide (NO) with small TM clusters is far from satisfactory, which compromises a deep understanding of real catalyst devices. In this study, we report a density functional theory study of the adsorption properties of NO on the TM13 (TM = Rh, Pd, Ir, Pt) clusters employing the projected augmented wave method. We found that the interaction of NO with TM13 is much more complex than that for NO/TM(111). In particular, for low symmetry TM13 clusters, there is a strong rearrangement of the electronic charge density upon NO adsorption and, as a consequence, the adsorption energy shows a very complex dependence even for adsorption sites with the same local effective coordination. We found a strong enhancement of the binding energy of NO to the TM13 clusters compared with the TM(111) surfaces, as the antibonding NO states are not occupied for NO/TM13, and the general relationship based on the d-band model between adsorption energy and the center of gravity of the occupied d-states does not hold for the studied TM13 clusters, in particular, for clusters with low symmetry. In contrast with the adsorption energy trends, the geometric NO/TM13 parameters and the vibrational N-O frequencies for different coordination sites follow the same trend as for the respective TM(111) surfaces, while the changes in the frequencies between different surfaces and TM13 clusters reflect the strong NO-TM13 interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of benzenethiol and diphenyl disulfide with the silicon (001) surface. A direct comparison of different adsorption structures with Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) allow us to identify that benzenethiol and diphenyl disulfide dissociatively adsorb on the silicon surface. In addition, theoretically obtained data suggests that the C6H5SH:Si(001) presents a higher Schottky barrier height contact when compared to other similar aromatic molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The solid solution based on Nb5Si3 (Cr5B3 structure type, D8(l), tl32, 14/mcm, No140, a=6.5767 angstrom, c=11.8967 angstrom) in the Nb-Si-B system was studied from the structural and thermodynamic point of view both experimentally and by ab initio calculations. Rietveld refinement of powder X-ray synchrotron data allowed to determine the boron to silicon substitution mechanism and the structural parameters. Ab initio calculations of different ordered compounds and selected disordered alloys allowed to obtain in addition to the enthalpy of formation of the solution, substitution mechanism and structural parameters which are in excellent agreement with the experimental data. The stability of the phase is discussed. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structural and electronic properties of the PtnTM55-n (TM = Co, Rh, Au) nanoalloys are investigated using density functional theory within the generalized gradient approximation and employing the all-electron projected augmented wave method. For TM = Co and Rh, the excess energy, which measures the relative energy stability of the nanoalloys, is negative for all Pt compositions. We found that the excess energy has similar values for a wide range of Pt compositions, i.e., n = 20-42 and n = 28-42 for Co and Rh, respectively, with the core shell icosahedron-like configuration (n = 42) being slightly more stable for both Co and Rh systems because of the larger release of the strain energy due to the smaller atomic size of the Co and Rh atoms. For TM = Au, the excess energy is positive for all compositions, except for n = 13, which is energetically favorable due to the formation of the core-shell structure (Pt in the core and Au atoms at the surface). Thus, our calculations confirm that the formation of core-shell structures plays an important role to increase the stability of nanoalloys. The center of gravity of the occupied d-states changes almost linearly as a function of the Pt composition, and hence, based on the d-band model, the magnitude of the adsorption energy of an adsorbate can be tuned by changing the Pt composition. The magnetic moments of PtnCo55-n decrease almost linearly as a function of the Pt composition; however, the same does not hold for PtRh and PtAu. We found an enhancement of the magnetic moments of PtRh by a few times by increasing Pt composition, which we explain by the compression effects induced by the large size of the Pt atoms compared with the Rh atoms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

X-ray absorption spectroscopy (XAS) is a powerful means of investigation of structural and electronic properties in condensed -matter physics. Analysis of the near edge part of the XAS spectrum, the so – called X-ray Absorption Near Edge Structure (XANES), can typically provide the following information on the photoexcited atom: - Oxidation state and coordination environment. - Speciation of transition metal compounds. - Conduction band DOS projected on the excited atomic species (PDOS). Analysis of XANES spectra is greatly aided by simulations; in the most common scheme the multiple scattering framework is used with the muffin tin approximation for the scattering potential and the spectral simulation is based on a hypothetical, reference structure. This approach has the advantage of requiring relatively little computing power but in many cases the assumed structure is quite different from the actual system measured and the muffin tin approximation is not adequate for low symmetry structures or highly directional bonds. It is therefore very interesting and justified to develop alternative methods. In one approach, the spectral simulation is based on atomic coordinates obtained from a DFT (Density Functional Theory) optimized structure. In another approach, which is the object of this thesis, the XANES spectrum is calculated directly based on an ab – initio DFT calculation of the atomic and electronic structure. This method takes full advantage of the real many-electron final wavefunction that can be computed with DFT algorithms that include a core-hole in the absorbing atom to compute the final cross section. To calculate the many-electron final wavefunction the Projector Augmented Wave method (PAW) is used. In this scheme, the absorption cross section is written in function of several contributions as the many-electrons function of the finale state; it is calculated starting from pseudo-wavefunction and performing a reconstruction of the real-wavefunction by using a transform operator which contains some parameters, called partial waves and projector waves. The aim of my thesis is to apply and test the PAW methodology to the calculation of the XANES cross section. I have focused on iron and silicon structures and on some biological molecules target (myoglobin and cytochrome c). Finally other inorganic and biological systems could be taken into account for future applications of this methodology, which could become an important improvement with respect to the multiscattering approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wireless sensor networks are posed as the new communication paradigm where the use of small, low-complexity, and low-power devices is preferred over costly centralized systems. The spectra of potential applications of sensor networks is very wide, ranging from monitoring, surveillance, and localization, among others. Localization is a key application in sensor networks and the use of simple, efficient, and distributed algorithms is of paramount practical importance. Combining convex optimization tools with consensus algorithms we propose a distributed localization algorithm for scenarios where received signal strength indicator readings are used. We approach the localization problem by formulating an alternative problem that uses distance estimates locally computed at each node. The formulated problem is solved by a relaxed version using semidefinite relaxation technique. Conditions under which the relaxed problem yields to the same solution as the original problem are given and a distributed consensusbased implementation of the algorithm is proposed based on an augmented Lagrangian approach and primaldual decomposition methods. Although suboptimal, the proposed approach is very suitable for its implementation in real sensor networks, i.e., it is scalable, robust against node failures and requires only local communication among neighboring nodes. Simulation results show that running an additional local search around the found solution can yield performance close to the maximum likelihood estimate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the dissociative chemisorption of hydrogen on both pure and Ti-incorporated Mg(0001) surfaces are studied by ab initio density functional theory (DFT) calculations. The calculated dissociation barrier of hydrogen molecule on a pure Mg(0001) surface (1.05 eV) is in good agreement with comparable theoretical studies. For the Ti-incorporated Mg(0001) surface, the activated barrier decreases to 0.103 eV due to the strong interaction between the molecular orbital of hydrogen and the d metal state of Ti. This could explain the experimentally observed improvement in absorption kinetics of hydrogen when transition metals have been introduced into the magnesium materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The low index Magnesium hydride surfaces, MgH2(001) and MgH2(110), have been studied by ab intio Density Functional Theory (DFT) calculations. It was found that the MgH2(110) surface is more stable than MgH2(001) surface, which is in good agreement with the experimental observation. The H-2 desorption barriers vary depending on the crystalline surfaces that are exposed and also the specific H atom sites involved-they are found to be generally high, due to the thermodynamic stability of the MgH2, system, and are larger for the MgH2(001) surface. The pathway for recombinative desorption of one in-plane and one bridging H atom from the MgH2(110) surface was found to be the lowest energy barrier amongst those computed (172 KJ/mol) and is in good agreement with the experimental estimates. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ab initio density functional theory (DFT) calculations are performed to explore possible catalytic effects on the dissociative chemisorption of hydrogen on a Mg(0001) surface when carbon is incorporated into Mg materials. The computational results imply that a C atom located initially on a Mg(0001) surface can migrate into the subsurface and occupy an fcc interstitial site, with charge transfer to the C atom from neighboring Mg atoms. The effect of subsurface C on the dissociation of H-2 on the Mg(0001) surface is found to be relatively marginal: a perfect sublayer of interstitial C is calculated to lower the barrier by 0.16 eV compared with that on a pure Mg(0001) surface. Further calculations reveal, however, that sublayer C may have a significant effect in enhancing the diffusion of atomic hydrogen into the sublayers through fcc channels. This contributes new physical understanding toward rationalizing the experimentally observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ab initio density functional theory (DFT) calculations are performed to study the adsorption of H-2 molecules on a Ti-doped Mg(0001) surface. We find that two hydrogen molecules are able to dissociate on top of the Ti atom with very small activation barriers (0.103 and 0.145 eV for the first and second H-2 molecules, respectively). Additionally, a molecular adsorption state of H-2 above the Ti atom is observed for the first time and is attributed to the polarization of the H-2 molecule by the Ti cation. Our results parallel recent findings for H-2 adsorption on Ti-doped carbon nanotubes or fullerenes. They provide new insight into the preliminary stages of hydrogen adsorption onto Ti-incorporated Mg surfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we use density functional theory corrected for on-site Coulomb interactions (DFT + U) and hybrid DFT (HSE06 functional) to study the defects formed when the ceria (110) surface is doped with a series of trivalent dopants, namely, Al3+, Sc3+, Y3+, and In 3+. Using the hybrid DFT HSE06 exchange-correlation functional as a benchmark, we show that doping the (110) surface with a single trivalent ion leads to formation of a localized MCe / + O O • (M = the 3+ dopant), O- hole state, confirming the description found with DFT + U. We use DFT + U to investigate the energetics of dopant compensation through formation of the 2MCe ′ +VO ̈ defect, that is, compensation of two dopants with an oxygen vacancy. In conjunction with earlier work on La-doped CeO2, we find that the stability of the compensating anion vacancy depends on the dopant ionic radius. For Al3+, which has the smallest ionic radius, and Sc3+ and In3+, with intermediate ionic radii, formation of a compensating oxygen vacancy is stable. On the other hand, the Y3+ dopant, with an ionic radius close to that of Ce4+, shows a positive anion vacancy formation energy, as does La3+, which is larger than Ce4+ (J. Phys.: Condens. Matter 2010, 20, 135004). When considering the resulting electronic structure, in Al3+ doping, oxygen hole compensation is found. However, Sc 3+, In3+, and Y3+ show the formation of a reduced Ce3+ cation and an uncompensated oxygen hole, similar to La3+. These results suggest that the ionic radius of trivalent dopants strongly influences the final defect formed when doping ceria with 3+ cations. In light of these findings, experimental investigations of these systems will be welcome.