132 resultados para atropine
Resumo:
PURPOSE--To analyze the influence of transient and sustained elevations of arterial pressure (AP) on the rate of rise of the left ventricular pressure (dp/dt). METHODS--Thirteen anesthetized, thoracotomized and mechanically ventilated dogs, submitted to pharmacological autonomic block (oxprenolol-3 mg/kg plus atropine-0.5 mg/kg). The AP elevation was obtained by mechanical constriction of the descending thoracic aorta. Two protocols were applied to all animals: Transient Arterial Hypertension (TAH) and Sustained Arterial Hypertension (SAH) and the following variables were evaluated: heart rate (HR), systolic (LVSP) and end diastolic (LVEDP) left ventricular pressure and dp/dt. In TAH the variables were analyzed in the basal condition (To) and at the maximal value of AP attained during the transient pressure elevation (TM). In the protocol SAH the variables were evaluated in the conditions: Control (Ho), hypertension 1 (H1) and hypertension 2 (H2). RESULTS--Considering all conditions, there were no significant differences among the values of HR. In the protocol TAH, the LVSP varied from 133 +/- 22 mmHg to 180 +/- 27 mmHg, whereas in SAH the values of LVSP were as follow: HO = 129 +/- 25 mmHg; H1 = 152 = 23 mmHg; H2 = 182 +/- 24 mmHg. LVEDP changed in both protocols: To = 7 +/- 2 mmHg; TM = 13 +/- 2 mmHg (p < 0.05); Ho = 7 +/- 2 mmHg; H1 = 10 +/- 2 mmHg; H2 = 14 +/- 3 mmHg (p < 0.05). During TAH there was no difference between the values of dp/dt (To = 3.303 +/- 598 mmHg/s; TM = 3.350 +/- 653 mmHg/s; p > 0.05), however, there were increases of the dp/dt during SAH (Ho = 3.233 +/- 576 mmHg/s; H1 = 3.831 +/- 667 mmHg/s; H1 = 4.594 +/- 833 mmHg/2; p < 0.05). CONCLUSION--The values of dp/dt are not influenced by transient elevation of AP. Sustained increase of AP activates cardiac adjustments, which results in elevation of dp/dt, by stimulation of contractile state. Probably, the inotropic intervention mechanism is the length dependent activation due to the Frank-Starling mechanism.
Resumo:
Purpose - To evaluate the influence of sustained elevations of arterial pressure on dP/dt values, which the left ventricular end diastolic pressure was kept constant. Methods - Thirteen anesthetized dogs, mechanically ventilated and submitted to thoracotomy and pharmacological autonomic block (atropine - 0.5 mg/kg IV + oxprenolol - 3 mg/kg IV) were studied. The arterial pressure elevation was obtained by mechanical constriction of the descending thoracic aorta. Analyses were made in control (C) situation and after two successives increments of arterial pressure, sustained for 10min, called hypertension 1 (H1) and hypertension 2 (H2), respectively. The end diastolic left ventricular pressure was kept constant by utilization of a perfusion system connected to the left atria. Results - Heart rate did not change (C: 125 ± 13.9bpm; H1: 125 ± 13.5bpm; H2: 123 ± 14.1bpm; p > 0.05); the LVSP increased (C: 119 ± 8.1mmHg; H1: 142 ± 7.9mmHg; H2: 166 ± 7.7mmHg; p < 0.01); the AoDP increased (C: 89 ± 11.6mmHg; H1: 99 ± 9.5mmHg; H2: 120 ± 11.8mmHg; p < 0.01); the LVEDP (C: 6.2 ± 2.48mmHg; H1: 6.3 ± 2.43mmHg; H2: 6.1 ± 2.51mmHg; p > 0.05) and the dP/dt (C: 3068 ± 1057.1mmHg/s; 3112 ± 995.7mmHg/s; H2: 3086 ± 979.5mmHg/s; p > 0.05) did not change. Conclusion - dP/dt values are not influenced by a sustained elevation of arterial pressure, when the end diastolic left ventricular pressure is kept constant.
Resumo:
Background and Objectives - It is essential to reduce health care costs without impairing the quality of care. Propofol is associated to faster recovery and it is known that post-anesthesia care unit (PACU) costs are high. The aim of this study was to evaluate the advantages of two anesthesia regimens - propofol continuous infusion or isoflurane - taking into account the cost of both techniques on PACU stay. Methods - Forty seven patients, physical status ASA I, II and III, undergoing laparoscopic cholecystectomy were divided into 2 groups according to the anesthetic agent: G1, conventional propofol continuous infusion (100-150 μg.kg-1.min-1) and G2, isoflurane. All patients were induced with sufentanil (1 μg.kg-1) and propofol (2 mg.kg-1) and were kept in a re-inhalation circuit (2 L.min-1 of fresh gas flow) with 50% N2O in O2, sufentanil (0.01 μg.kg-1.min-1) and atracurium (0.5 mg.kg-1), or pancuronium (0.1 mg.kg-1) for asthma patients. All patients received atropine and neostigmine at the end of the surgery. Prophylactic ondansetron, dipyrone and tenoxican were administered and, when necessary, tramadol and N-butylscopolamine. Costs of anesthetic drugs (COST), total PACU stay (t-PACU), and PACU stay after extubation (t-EXT) were computed for both groups. Results - Costs were significantly lower in the isoflurane group but t-PACU was 26 minutes longer and t-EXT G1
Resumo:
Reactive oxygen species (ROS) have been shown to modulate neuronal synaptic transmission and may play a role on the autonomic control of the cardiovascular system. In this study we investigated the effects produced by hydrogen peroxide (H 2O 2) injected alone or combined with the anti-oxidant agent N-acetil-l-cysteine (NAC) or catalase into the fourth brain ventricle (4th V) on mean arterial pressure and heart rate of conscious rats. Moreover the involvement of the autonomic nervous system on the cardiovascular responses to H 2O 2 into the 4th V was also investigated. Male Holtzman rats (280-320 g) with a stainless steel cannula implanted into the 4th V and polyethylene cannulas inserted into the femoral artery and vein were used. Injections of H 2O 2 (0.5, 1.0 and 1.5 μmol/0.2 μL, n = 6) into the 4th V produced transient (for 10 min) dose-dependent pressor responses. The 1.0 and 1.5 μmol doses of H 2O 2 also produced a long lasting bradycardia (at least 24 h with the high dose of H 2O 2). Prior injection of N-acetyl-l-cysteine (250 nmol/1 μL/rat) into the 4th V blockade the pressor response and attenuated the bradycardic response to H 2O 2 (1 μmol/0.5 μL/rat, n = 7) into the 4th V. Intravenous (i.v.) atropine methyl bromide (1.0 mg/kg, n = 11) abolished the bradycardia but did not affect the pressor response to H 2O 2. Prazosin hydrochloride (1.0 mg/kg, n = 6) i.v. abolished the pressor response but did not affect the bradycardia. The increase in the catalase activity (500 UEA/1 μL/rat injected into the 4th V) also abolished both, pressor and bradycardic responses to H 2O 2. The results suggest that increased ROS availability into 4th V simultaneously activate sympathetic and parasympathetic outflow inducing pressor and bradycardic responses. © 2006 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND AND OBJECTIVES: Myotonic dystrophies are autosomal dominant neuromuscular diseases. Among them, myotonic dystrophy type 1 (MD1), or Steinert disease, is the most common in adults, and besides muscular involvement it also has important systemic manifestations. Myotonic dystrophy type 1 poses a challenge to the anesthesiologist. Those patients are more sensitive to anesthetics and prone to cardiac and pulmonary complications. Besides, the possibility of developing malignant hyperthermia and myotonic episodes is also present. CASE REPORT: This is a 39-year old patient with DM1 who underwent general anesthesia for videolaparoscopic cholecystectomy. Total intravenous anesthesia with propofol, remifentanil, and rocuronium was the technique chosen. Intercurrences were not observed in the 90-minute surgical procedure, but after extubation, the patient developed respiratory failure and myotonia, which made tracheal intubation impossible. A laryngeal mask was used, allowing adequate oxygenation, and mechanical ventilation was maintained until full recovery of the respiratory function. The patient did not develop further complications. CONCLUSIONS: Myotonic dystrophy type 1 presents several particularities to the anesthesiologist. Detailed knowledge of its systemic involvement along with the differentiated action of anesthetic drugs in those patients will provide safer anesthetic-surgical procedure.
Resumo:
Leaves from Carpolobia lutea (Polygalaceae) were screened to establish the antiulcer ethnomedicinal claim and to quantitatively isolate, elucidate the active compounds by semi-preparative HPLC. The anti-nociceptive effects of Carpolobia lutea (CL) G. Don (Polygalaceae) organic leaf extracts were tested in experimental models in mice. The anti-nociceptive mechanism was determined using tail-flick test, acetic acid-induced abdominal constrictions, formalin-induced hind paw licking and the hot plate test. The fractions (ethanol, ethyl acetate, chloroform, n-hexane) and crude ethyl acetate extract of CL (770 mg/kg, i.p.) produced significant inhibitions of both phases of the formalin-induced pain in mice, a reduction in acetic acid-induced writhing as well as and an elevation of the pain threshold in the hot plate test in mice. The inhibitions were greater to those produced by indomethacin (5 mg/kg, i.p.). Ethyl acetate fraction revealed cinnamic and coumaric acids derivatives, which are described for the first time in literature. These cinnamalglucosides polyphenols characterised from CL may in part account for the pharmacological activities. These findings confirm its ethnomedical use in anti-inflammatory pain and in pains from gastric ulcer-associated symptoms. © 2011 Springer Basel AG.
Resumo:
Bilateral injections of the GABAA agonist muscimol into the lateral parabrachial nucleus (LPBN) disrupt satiety and induce strong ingestion of water and 0.3M NaCl in fluid-replete rats by mechanisms not completely clear. In the present study, we investigated the effects of the blockade of central muscarinic cholinergic receptors with atropine injected intracerebroventricularly (i.c.v.) on 0.3M NaCl and water intake induced by muscimol injections into the LPBN in fluid-replete rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the LPBN and unilaterally into the lateral ventricle (LV) were used. Bilateral injections of muscimol (0.5nmol/0.2μL) into the LPBN induced 0.3M NaCl (32.2±9.9mL/4h, vs. saline: 0.4±0.2mL/4h) and water intake (11.4±4.4mL/4h, vs. saline: 0.8±0.4mL/4h) in fluid-replete rats previously treated with i.c.v. injection of saline. The previous i.c.v. injection of atropine (20nmol/1μL) reduced the effects of LPBN-muscimol on 0.3M NaCl (13.5±5.0mL/4h) and water intake (2.9±1.6mL/4h). The i.c.v. injection of atropine did not affect 0.3M NaCl (26.8±6.2mL/2h, vs. saline i.c.v.: 36.5±9.8mL/2h) or water intake (14.4±2.5mL/2h, vs. saline i.c.v.: 15.6±4.8mL/2h) in rats treated with furosemide+captopril subcutaneously combined with bilateral injections of moxonidine (α2-adrenoceptor/imidazoline agonist, 0.5nmol/0.2μL) into the LPBN, suggesting that the effect of atropine was not due to non-specific inhibition of ingestive behaviors. The results show that active central cholinergic mechanisms are necessary for the hypertonic NaCl and water intake induced by the blockade of the inhibitory mechanisms with injections of muscimol into the LPBN in fluid-replete rats. The suggestion is that in fluid-replete rats the action of LPBN mechanisms inhibits facilitatory signals produced by the activity of central cholinergic mechanisms to maintain satiety. © 2012 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Anestesiologia - FMB