911 resultados para architectural computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of behavioural consistency is an important aspect of software engineering. In process and service management, consistency verification of behavioural models has manifold applications. For instance, a business process model used as system specification and a corresponding workflow model used as implementation have to be consistent. Another example would be the analysis to what degree a process log of executed business operations is consistent with the corresponding normative process model. Typically, existing notions of behaviour equivalence, such as bisimulation and trace equivalence, are applied as consistency notions. Still, these notions are exponential in computation and yield a Boolean result. In many cases, however, a quantification of behavioural deviation is needed along with concepts to isolate the source of deviation. In this article, we propose causal behavioural profiles as the basis for a consistency notion. These profiles capture essential behavioural information, such as order, exclusiveness, and causality between pairs of activities of a process model. Consistency based on these profiles is weaker than trace equivalence, but can be computed efficiently for a broad class of models. In this article, we introduce techniques for the computation of causal behavioural profiles using structural decomposition techniques for sound free-choice workflow systems if unstructured net fragments are acyclic or can be traced back to S- or T-nets. We also elaborate on the findings of applying our technique to three industry model collections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of behavioural contradictions is an important aspect of software engineering, in particular for checking the consistency between a business process model used as system specification and a corresponding workflow model used as implementation. In this paper, we propose causal behavioural profiles as the basis for a consistency notion, which capture essential behavioural information, such as order, exclusiveness, and causality between pairs of activities. Existing notions of behavioural equivalence, such as bisimulation and trace equivalence, might also be applied as consistency notions. Still, they are exponential in computation. Our novel concept of causal behavioural profiles provides a weaker behavioural consistency notion that can be computed efficiently using structural decomposition techniques for sound free-choice workflow systems if unstructured net fragments are acyclic or can be traced back to S- or T-nets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational optimisation of clinically important electrocardiogram signal features, within a single heart beat, using a Markov-chain Monte Carlo (MCMC) method is undertaken. A detailed, efficient data-driven software implementation of an MCMC algorithm has been shown. Initially software parallelisation is explored and has been shown that despite the large amount of model parameter inter-dependency that parallelisation is possible. Also, an initial reconfigurable hardware approach is explored for future applicability to real-time computation on a portable ECG device, under continuous extended use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of cloud computing to provide almost unlimited storage, backup and recovery, and quick deployment contributes to its widespread attention and implementation. Cloud computing has also become an attractive choice for mobile users as well. Due to limited features of mobile devices such as power scarcity and inability to cater computationintensive tasks, selected computation needs to be outsourced to the resourceful cloud servers. However, there are many challenges which need to be addressed in computation offloading for mobile cloud computing such as communication cost, connectivity maintenance and incurred latency. This paper presents taxonomy of the computation offloading approaches which aim to address the challenges. The taxonomy provides guidelines to identify research scopes in computation offloading for mobile cloud computing. We also outline directions and anticipated trends for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the natural problem of secure n-party computation (in the passive, computationally unbounded attack model) of the n-product function f G (x 1,...,x n ) = x 1 ·x 2 ⋯ x n in an arbitrary finite group (G,·), where the input of party P i is x i  ∈ G for i = 1,...,n. For flexibility, we are interested in protocols for f G which require only black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element). Our results are as follows. First, on the negative side, we show that if (G,·) is non-abelian and n ≥ 4, then no ⌈n/2⌉-private protocol for computing f G exists. Second, on the positive side, we initiate an approach for construction of black-box protocols for f G based on k-of-k threshold secret sharing schemes, which are efficiently implementable over any black-box group G. We reduce the problem of constructing such protocols to a combinatorial colouring problem in planar graphs. We then give two constructions for such graph colourings. Our first colouring construction gives a protocol with optimal collusion resistance t < n/2, but has exponential communication complexity O(n*2t+1^2/t) group elements (this construction easily extends to general adversary structures). Our second probabilistic colouring construction gives a protocol with (close to optimal) collusion resistance t < n/μ for a graph-related constant μ ≤ 2.948, and has efficient communication complexity O(n*t^2) group elements. Furthermore, we believe that our results can be improved by further study of the associated combinatorial problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatiotemporal dynamics of an alien species invasion across a real landscape are typically complex. While surveillance is an essential part of a management response, planning surveillance in space and time present a difficult challenge due to this complexity. We show here a method for determining the highest probability sites for occupancy across a landscape at an arbitrary point in the future, based on occupancy data from a single slice in time. We apply to the method to the invasion of Giant Hogweed, a serious weed in the Czech republic and throughout Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantifying the impact of biochemical compounds on collective cell spreading is an essential element of drug design, with various applications including developing treatments for chronic wounds and cancer. Scratch assays are a technically simple and inexpensive method used to study collective cell spreading; however, most previous interpretations of scratch assays are qualitative and do not provide estimates of the cell diffusivity, D, or the cell proliferation rate,l. Estimating D and l is important for investigating the efficacy of a potential treatment and provides insight into the mechanism through which the potential treatment acts. While a few methods for estimating D and l have been proposed, these previous methods lead to point estimates of D and l, and provide no insight into the uncertainty in these estimates. Here, we compare various types of information that can be extracted from images of a scratch assay, and quantify D and l using discrete computational simulations and approximate Bayesian computation. We show that it is possible to robustly recover estimates of D and l from synthetic data, as well as a new set of experimental data. For the first time, our approach also provides a method to estimate the uncertainty in our estimates of D and l. We anticipate that our approach can be generalized to deal with more realistic experimental scenarios in which we are interested in estimating D and l, as well as additional relevant parameters such as the strength of cell-to-cell adhesion or the strength of cell-to-substrate adhesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discipline of architecture focuses on designing the built environment in response to the needs of society, reflecting culture through materials and forms. The physical boundaries of the city have become blurred through the integration of digital media, connecting the physical environment with the digital. In the recent past the future was imagined as highly technological; Ridley Scott’s Blade Runner is set in 2019 and introduces a polluted world where supersized screens inject advertisements in the cluttered urban space. Now, in 2014 screens are central to everyday life, but in a completely different way in respect to what had been imagined. Through ubiquitous computing and social media, information is abundant. Digital technologies have changed the way people relate to urban form supporting discussion on multiple levels, allowing citizens to be more vocal than ever before. Bottom-up campaigns to oppose anticipated developments or to suggest intervention in the way cities are designed, are a common situation in several parts of the world. For some extent governments and local authorities are trying to engage with developing technologies, but a common issue is that social media cannot be controlled or filtered as can be done with more traditional consultation methods. We question how designers can use the affordances of urban informatics to obtain and navigate useful social information to inform architectural and urban design. This research investigates different approaches to engage communities in the debate on the built environment. Physical and digital discussions have been initiated to capture citizens’ opinions on the use and design of public places. Online platforms, urban screens, mobile apps and guerrilla techniques are explored in the context of Brisbane, Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported by contemporary theories of architectural aesthetics and neuro-aesthetics this paper presents a case for the use of portable fNIRS imaging in the assessment of emotional responses to spatial environments experienced by both blind and sighted. The aim of the paper is to outline the implications of fNIRS for spatial research and practice within the field of architecture, thereby suggesting a potential taxonomy of particular formations of space and affect. Empirical neurological study of affect and spatial experience from an architectural design perspective remains in many instances unchartered. Clinical research using the portable non-invasive neuro-imaging device, functional near infrared spectroscopy (fNIRS) is proving convincing in its ability to detect emotional responses to visual, spatio-auditory and task based stimuli, providing a firm basis to potentially track cortical activity in the appraisal of architectural environments. Additionally, recent neurological studies have sought to explore the manifold sensory abilities of the visually impaired to better understand spatial perception in general. Key studies reveal that early blind participants perform as well as sighted due to higher auditory and somato-sensory spatial acuity. For instance, face vision enables the visually impaired to detect environments through skin pressure, enabling at times an instantaneous impression of the layout of an unfamiliar environment. Studies also report pleasant and unpleasant emotional responses such as ‘weightedness’ or ‘claustrophobia’ within certain interior environments, revealing a deeper perceptual sensitivity then would be expected. We conclude with justification that comparative fNIRS studies between the sighted and blind concerning spatial experience have the potential to provide greater understanding of emotional responses to architectural environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate Bayesian Computation’ (ABC) represents a powerful methodology for the analysis of complex stochastic systems for which the likelihood of the observed data under an arbitrary set of input parameters may be entirely intractable – the latter condition rendering useless the standard machinery of tractable likelihood-based, Bayesian statistical inference [e.g. conventional Markov chain Monte Carlo (MCMC) simulation]. In this paper, we demonstrate the potential of ABC for astronomical model analysis by application to a case study in the morphological transformation of high-redshift galaxies. To this end, we develop, first, a stochastic model for the competing processes of merging and secular evolution in the early Universe, and secondly, through an ABC-based comparison against the observed demographics of massive (Mgal > 1011 M⊙) galaxies (at 1.5 < z < 3) in the Cosmic Assembly Near-IR Deep Extragalatic Legacy Survey (CANDELS)/Extended Groth Strip (EGS) data set we derive posterior probability densities for the key parameters of this model. The ‘Sequential Monte Carlo’ implementation of ABC exhibited herein, featuring both a self-generating target sequence and self-refining MCMC kernel, is amongst the most efficient of contemporary approaches to this important statistical algorithm. We highlight as well through our chosen case study the value of careful summary statistic selection, and demonstrate two modern strategies for assessment and optimization in this regard. Ultimately, our ABC analysis of the high-redshift morphological mix returns tight constraints on the evolving merger rate in the early Universe and favours major merging (with disc survival or rapid reformation) over secular evolution as the mechanism most responsible for building up the first generation of bulges in early-type discs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytically or computationally intractable likelihood functions can arise in complex statistical inferential problems making them inaccessible to standard Bayesian inferential methods. Approximate Bayesian computation (ABC) methods address such inferential problems by replacing direct likelihood evaluations with repeated sampling from the model. ABC methods have been predominantly applied to parameter estimation problems and less to model choice problems due to the added difficulty of handling multiple model spaces. The ABC algorithm proposed here addresses model choice problems by extending Fearnhead and Prangle (2012, Journal of the Royal Statistical Society, Series B 74, 1–28) where the posterior mean of the model parameters estimated through regression formed the summary statistics used in the discrepancy measure. An additional stepwise multinomial logistic regression is performed on the model indicator variable in the regression step and the estimated model probabilities are incorporated into the set of summary statistics for model choice purposes. A reversible jump Markov chain Monte Carlo step is also included in the algorithm to increase model diversity for thorough exploration of the model space. This algorithm was applied to a validating example to demonstrate the robustness of the algorithm across a wide range of true model probabilities. Its subsequent use in three pathogen transmission examples of varying complexity illustrates the utility of the algorithm in inferring preference of particular transmission models for the pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collaboration between neuroscience and architecture is emerging as a key field of research as demonstrated in recent times by development of the Academy of Neuroscience for Architecture (ANFA) and other societies. Neurological enquiry of affect and spatial experience from a design perspective remains in many instances unchartered. Research using portable near infrared spectroscopy (fNIRs) - an emerging non-invasive neuro-imaging device, is proving convincing in its ability to detect emotional responses to visual, spatio-auditory and task based stimuli. This innovation provides a firm basis to potentially track cortical activity in the appraisal of architectural environments. Additionally, recent neurological studies have sought to explore the manifold sensory abilities of the visually impaired to better understand spatial perception in general. Key studies reveal that early blind participants perform as well as sighted due to higher auditory and somato-sensory spatial acuity. Studies also report pleasant and unpleasant emotional responses within certain interior environments revealing a deeper perceptual sensitivity than would be expected. Comparative fNIRS studies between the sighted and blind concerning spatial experience has the potential to provide greater understanding of emotional responses to architectural environments. Supported by contemporary theories of architectural aesthetics, this paper presents a case for the use of portable fNIRS imaging in the assessment of emotional responses to spatial environments experienced by both blind and sighted. The aim of the paper is to outline the implications of fNIRS upon spatial research and practice within the field of architecture and points to a potential taxonomy of particular formations of space and affect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designed for undergraduate and postgraduate students, academic researchers and industrial practitioners, this book provides comprehensive case studies on numerical computing of industrial processes and step-by-step procedures for conducting industrial computing. It assumes minimal knowledge in numerical computing and computer programming, making it easy to read, understand and follow. Topics discussed include fundamentals of industrial computing, finite difference methods, the Wavelet-Collocation Method, the Wavelet-Galerkin Method, High Resolution Methods, and comparative studies of various methods. These are discussed using examples of carefully selected models from real processes of industrial significance. The step-by-step procedures in all these case studies can be easily applied to other industrial processes without a need for major changes and thus provide readers with useful frameworks for the applications of engineering computing in fundamental research problems and practical development scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the existing algorithms for approximate Bayesian computation (ABC) assume that it is feasible to simulate pseudo-data from the model at each iteration. However, the computational cost of these simulations can be prohibitive for high dimensional data. An important example is the Potts model, which is commonly used in image analysis. Images encountered in real world applications can have millions of pixels, therefore scalability is a major concern. We apply ABC with a synthetic likelihood to the hidden Potts model with additive Gaussian noise. Using a pre-processing step, we fit a binding function to model the relationship between the model parameters and the synthetic likelihood parameters. Our numerical experiments demonstrate that the precomputed binding function dramatically improves the scalability of ABC, reducing the average runtime required for model fitting from 71 hours to only 7 minutes. We also illustrate the method by estimating the smoothing parameter for remotely sensed satellite imagery. Without precomputation, Bayesian inference is impractical for datasets of that scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grateful Fateful Sunshine Rain is a permanent public artwork commissioned by Aria Property Group through a competitive process for the Austin apartment building in South Brisbane. Artist Statement: Residents of Brisbane have a complex relationship with weather. As the capital of the Sunshine State, weather is an integral part of the city’s cultural identity. Weather deeply affects the mood of the city – from the excitement of scantily clad partygoers on balmy December evenings and late February’s lethargy, to the deepening anxiety that emerges after 100 days of rain (or more commonly, 100 days without rain). With a brief nod to the city’s – now decommissioned – iconic MCL weather beacon, Grateful Fateful Sunshine Rain taps into this aspect of Brisbane’s psyche with poetic, illuminated visualisations of real-time weather forecasts issued by the Bureau of Meteorology. Each evening, the artwork downloads tomorrow’s forecast from the Bureau of Meteorology website. Data including, current local temperature, humidity, wind speed & direction, precipitation (rain, hail etc), are used to generate a lighting display that conveys how tomorrow will feel. The artwork’s background colour indicates the expected temperature – from cold blues through mild pastel pinks and blues to bright hot oranges and reds. White fluffy clouds roll across the artwork if cloud is predicted. The density of these clouds indicates the level of cover whilst movement indicates expected wind speed and direction. If rain is predicted, sparkles of white light will appear on top of whichever background colour is chosen for the next day’s temperature. Sparkles appear constantly before wet, drizzly days, and intermittently if scattered showers are predicted. Intermittent, but more intense sparkles appear before rain storms or thunderstorms. Research Contribution: The work has made contributions to the field in the way it rethinks approaches to the conceptualization, design and realization of illuminated urban media. This has led to new theorizations of urban media, which consider light and illumination can be used to convey meaningful data. The research has produced new methods for controlling illumination systems using tools and techniques typically employed in computation arts. It has also develop methods and processes for the design and production of illuminated urban media architectures that are connected to real time data sources, and do which not follow the assumed logics of screen based media and displays.