857 resultados para architectural accessibility
Resumo:
Traditional perceptions of the human-animal relationship in the urban context typically see the spatial rejection of wildlife from the built environment and limiting of biodiversity conservation programs to areas of natural reserve. As urban growth places further spatial demands on natural habitat and contributes to continued global biodiversity loss, the recently introduced conservation approach of reconciliation ecology makes a call promoting ecological stewardship through embedding wildlife habitat within human dominated areas. Coinciding with this, the architectural sphere has seen a recent trend of design investigation addressing artificial animal habitat as features of the built environment. Although these precedents are currently a niche and scattered trend they show potential to address the human-animal dualism challenging the framework of reconciliation ecology. This research explores the role design plays in influencing perceptions of urban wildlife habitat, particularly considering the need to create and communicate value around wildlife biodiversity as a component of urban cultural place-making and ecological literacy. The study purpose sets out to establish a set of approaches and cultural preferences with which to direct further classification and development of this architectural trend. Brisbane is utilised as a case study city, as a locale containing proximities of relatively high wildlife and human populations in an urban setting and an established legislative biodiversity heritage and ethic. Through use of a qualitative and quantitative questionnaire targeting Brisbane residents, the research methodology established that although respondents perceptions generally aligned with traditional prejudice against wildlife around human buildings, artificial habitat intervention would be supported within the CBD provided it allowed for adequate distancing of humans from wildlife and conformed with contextual surroundings, or otherwise addressed habitat through redevelopment at an urban scale. As such further research directions for artificial habitat should focus on integration of artificial habitat as a component of façade design or green infrastructure programs.
Resumo:
This study analysed whether a significant relationship exists between the torque and muscle thickness and pennation angle of the erector spinae muscle during a maximal isometric lumbar extension with the lumbar spine in neutral position. This was a cross-sectional study in which 46 healthy adults performed three repetitions for 5 s of maximal isometric lumbar extension with rests of 90 s. During the lumbar extensions, bilateral ultrasound images of the erector spinae muscle (to measure pennation angle and muscle thickness) and torque were acquired. Reliability test analysis calculating the internal consistency (Cronbach's alpha) of the measure, correlation between pennation angle, muscle thickness and torque extensions were examined. Through a linear regression the contribution of each independent variable (muscle thickness and pennation angle) to the variation of the dependent variable (torque) was calculated. The results of the reliability test were: 0.976–0.979 (pennation angle), 0.980–0.980 (muscle thickness) and 0.994 (torque). The results show that pennation angle and muscle thickness were significantly related to each other with a range between 0.295 and 0.762. In addition, multiple regression analysis showed that the two variables considered in this study explained 68% of the variance in the torque. Pennation angle and muscle thickness have a moderate impact on the variance exerted on the torque during a maximal isometric lumbar extension with the lumbar spine in neutral position.
Resumo:
Large Display Arrays (LDAs) use Light Emitting Diodes (LEDs) in order to inform a viewing audience. A matrix of individually driven LEDs allows the area represented to display text, images and video. LDAs have undergone rapid development over the past 10 years in both the modular and semi-flexible formats. This thesis critically analyses the communication architecture and processor functionality of current LDAs and presents an alternative method, that is, Scalable Flexible Large Display Arrays (SFLDAs). SFLDAs are more adaptable to a variety of applications because of enhancements in scalability and flexibility. Scalability is the ability to configure SFLDAs from 0.8m2 to 200m2. Flexibility is increased functionality within the processors to handle changes in configuration and the use of a communication architecture that standardises two-way communication throughout the SFLDA. While common video platforms such as Digital Video Interface (DVI), Serial Digital Interface (SDI), and High Definition Multimedia Interface (HDMI) are considered as solutions for the communication architecture of SFLDAs, so too is modulation, fibre optic, capacitive coupling and Ethernet. From an analysis of these architectures, Ethernet was identified as the best solution. The use of Ethernet as the communication architecture in SFLDAs means that both hardware and software modules are capable of interfacing to the SFLDAs. The Video to Ethernet Processor Unit (VEPU), Scoreboard, Image and Control Software (SICS) and Ethernet to LED Processor Unit (ELPU) have been developed to form the key components in designing and implementing the first SFLDA. Data throughput rate and spectrophotometer tests were used to measure the effectiveness of Ethernet within the SFLDA constructs. The result of testing and analysis of these architectures showed that Ethernet satisfactorily met the requirements of SFLDAs.
Enriching architectural design education through interactive displays and local community engagement
Resumo:
Designers have a social responsibility to deal with the needs, issues, and problems that their clients and communities are confronted with. Students of design require opportunities to reflect on their role as social facilitators to develop an attitude towards community engagement through different phases and aspects of their careers. However, current design courses are challenged by compressed timeframes and fragmented scenarios of different academic requirements that do not actively teach community engagement. This paper outlines a participatory and technological approach that was employed to address these issues within the teaching of Architecture and Urban Design at the Queensland University of Technology, Brisbane, Australia. A multi-phase community based research project with actual stakeholders was implemented over a two-year period. Approximately 150 students in the final year of the Bachelor of Design-Architecture; 10 students in the Master of Architecture and 15 students in the Master of Design-Urban Design have informed and influenced each others’ learning through the teaching and research nexus facilitated by this project. The technical approach was implemented in form of a bespoke digital platform that supported the display and discussion of digital media on a series of interactive touch walls. The platform allowed students to easily upload their final designs onto large interactive surfaces, where visitors could explore the media and provide comments. Through the use of this technical platform and the introduction of neogeography, students have been able to broaden their level of interaction and support their learning experience through external structured and unstructured feedback from the local community. Students have not only been exposed to community representatives, but they also have been working in parallel on a specific case study providing each other, across different years and courses, material for reflection and data to structure their design activities.
Resumo:
Purpose To determine i) the architectural adaptations of the biceps femoris long head (BFlf) following concentric or eccentric strength training interventions; ii) the time course of adaptation during training and detraining. Methods Participants in this randomized controlled trial (control [n=28], concentric training group [n=14], eccentric training group [n=14], males) completed a 4-week control period, followed by 6 weeks of either concentric- or eccentric-only knee flexor training on an isokinetic dynamometer and finished with 28 days of detraining. Architectural characteristics of BFlf were assessed at rest and during graded isometric contractions utilizing two-dimensional ultrasonography at 28 days pre-baseline, baseline, days 14, 21 and 42 of the intervention and then again following 28 days of detraining. Results BFlf fascicle length was significantly longer in the eccentric training group (p<0.05, d range: 2.65 to 2.98) and shorter in the concentric training group (p<0.05, d range: -1.62 to -0.96) after 42 days of training compared to baseline at all isometric contraction intensities. Following the 28-day detraining period, BFlf fascicle length was significantly reduced in the eccentric training group at all contraction intensities compared to the end of the intervention (p<0.05, d range: -1.73 to -1.55). There was no significant change in fascicle length of the concentric training group following the detraining period. Conclusions These results provide evidence that short term resistance training can lead to architectural alterations in the BFlf. In addition, the eccentric training-induced lengthening of BFlf fascicle length was reversed and returned to baseline values following 28 days of detraining. The contraction mode specific adaptations in this study may have implications for injury prevention and rehabilitation.
Resumo:
This research improved the measurement of public transport accessibility by capturing; travellers' behaviour; diversity of public transport mode; and the subjectivity of travellers' decision in the complex transport networks. The results of this research not only highlighted the importance of considering public transport network characteristics but also, revealed the impact of public transport diversity in the modelling of public transport accessibility. The research developed a hybrid discrete choice model with a nested logit structure to treat the correlation among the public transport mode choices and, a logit correction factor to rectify the correlation among the stop choices.
Resumo:
Informed by phenomenology and grounded theory this research identifies the general community's contextual sense-making in relation to their everyday experience of buildings producing a comprehensive theoretical framework that acknowledges a person's relationship with a building as dynamic and unfolding, as opposed to static and constant; and as emotive and existential as well as conceptual and perceptual. In this regard, the research makes an original contribution to environmental psychology, architecture and design and through this discipline knowledge to the design of more habitable buildings, and interior and urban environments.
Resumo:
This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. Such a vessel is a key enabling factor for operation and maintenance (O&M) of offshore wind-energy infrastructure. The control system designed is referred to as Boarding Control System (BCS). We investigate the performance of this system for a specific wind-farm service vessel–The Wave Craft. A two-modality vessel model is presented to account for the vessel free motion and motion whilst in contact with a wind-turbine. On a SES, the pressurized air cushion carries the majority of the vessel mass. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. This leads to a safer personnel transfer in developed sea-states than what is possible today. Results for the BCS is presented through simulation and model-scale craft testing.
Resumo:
There is a quickly growing movement toward more functional and accessible housing designs in Calgary, in Canada and within North America. Why? There are several important contributing factors: Our aging Baby-boomer Population (and their caring for elderly parents). The growing demand for more sustainable housing (keeping one’s dwelling for greater lengths of time).
Resumo:
It has been nearly 25 years since the problems associated with passive learning in large undergraduate classes were first established by McDermott (1991). STEM education, for example North Carolina State University’s SCALE-UP project, has subsequently been influenced by some unique aspects of design studio education. While there are now many institutions applying SCALE-UP or similar approaches to enable lively interaction, enhanced learning, increased student engagement, and to teach many different content areas to classes of all sizes, nearly all of these have remained in the STEM fields (Beichner, 2008). Architectural education, although originally at the forefront of this field, has arguably been left behind. Architectural practice is undergoing significant change, globally. Access to new technology and the development of specialised architectural documentation software has scaffolded new building procurement methods and allowed consultant teams to work more collaboratively, efficiently and even across different time zones. Up until recently, the spatial arrangements, pedagogical approaches, and project work outcomes in the architectural design studio, have not been dissimilar to its inception. It is not possible to keep operating architectural design studios the same way that they have for the past two hundred years, with this new injection of high-end technology and personal mobile Wi-Fi enabled devices. Employing a grounded theory methodology, this study reviews the current provision of architectural design learning terrains across a range of tertiary institutions, in Australia. Some suggestions are provided for how these spaces could be modified to address the changing nature of the profession, and implications for how these changes may impact the design of future SCALE-UP type spaces outside of the discipline of architecture, are also explored.
Resumo:
Diversification and expansion of global higher education in the 21st century, has resulted in Learning Landscapes for architectural education that can no longer be sustained by the traditional model. Changes have resulted because of surging student numbers, extensions to traditional curricula, evolving competency standards and accreditation requirements, and modified geographical and pedagogical boundaries. The influx of available new technology has helped to democratise knowledge, transforming when, where and how learning takes place. Pressures on government funded higher education budgets highlight the need for a critical review of the current approach to the design and use of learning environments. Efficient design of physical space contributes significantly to savings in provision, management and use of facilities, while also potentially improving pedagogical quality. The purpose of this research is to identify emerging trends in the design of future Learning Landscapes for architectural education in Australasia; to understand where and how students of architecture are likely to learn, in the future context. It explores the important linkages between space, place, pedagogy, technology and context, using a multi methodological qualitative research approach. An Australasian context study will explore the Learning Landscapes of 23 Schools of Architecture across Australia, New Zealand and Papua New Guinea. The focus of this paper is on the methodology which is being employed to undertake dynamic data collection for the study. The research will be determined through mapping all forms of architectural learning environments, pedagogical approaches and contextual issues, to bridge the gap between academic theory, and architectural design practice. An initial understanding that pedagogy is an intrinsic component imbedded within the design of learning environments, will play an important role. Active learning environments which are exemplified by the architectural design studio, support dynamic project based and collaborative connected learning models. These have recently become a lot more common in disciplines outside of design and the arts. It is anticipated, therefore, that the implications for this research may well have a positive impact far beyond the confines of the architectural studio learning environment.
Resumo:
Two field experiments using maize (Pioneer 31H50) and three watering regimes [(i) irrigated for the whole crop cycle, until anthesis, (ii) not at all (experiment 1) and (iii) fully irrigated and rain grown for the whole crop cycle (experiment 2)] were conducted at Gatton, Australia, during the 2003-04 season. Data on crop ontogeny, leaf, sheath and internode lengths and leaf width, and senescence were collected at 1- to 3-day intervals. A glasshouse experiment during 2003 quantified the responses of leaf shape and leaf presentation to various levels of water stress. Data from experiment 1 were used to modify and parameterise an architectural model of maize (ADEL-Maize) to incorporate the impact of water stress on maize canopy characteristics. The modified model produced accurate fitted values for experiment 1 for final leaf area and plant height, but values during development for leaf area were lower than observed data. Crop duration was reasonably well fitted and differences between the fully irrigated and rain-grown crops were accurately predicted. Final representations of maize crop canopies were realistic. Possible explanations for low values of leaf area are provided. The model requires further development using data from the glasshouse study and before being validated using data from experiment 2 and other independent data. It will then be used to extend functionality in architectural models of maize. With further research and development, the model should be particularly useful in examining the response of maize production to water stress including improved prediction of total biomass and grain yield. This will facilitate improved simulation of plant growth and development processes allowing investigation of genotype by environment interactions under conditions of suboptimal water supply.
Resumo:
Root system characteristics are of fundamental importance to soil exploration and below-ground resource acquisition. Root architectural traits determine the in situ space-filling properties of a root system or root architecture. The growth angle of root axes is a principal component of root system architecture that has been strongly associated with acquisition efficiency in many crop species. The aims of this study were to examine the extent of genotypic variability for the growth angle and number of seminal roots in 27 current Australian and 3 CIMMYT wheat (Triticum aestivum L.) genotypes, and to quantify using fractal analysis the root system architecture of a subset of wheat genotypes contrasting in drought tolerance and seminal root characteristics. The growth angle and number of seminal roots showed significant genotypic variation among the wheat genotypes with values ranging from 36 to 56 (degrees) and 3 to 5 (plant-1), respectively. Cluster analysis of wheat genotypes based on similarity in their seminal root characteristics resulted in four groups. The group composition reflected to some extent the genetic background and environmental adaptation of genotypes. Wheat cultivars grown widely in the Mediterranean environments of southern and western Australia generally had wider growth angle and lower number of seminal axes. In contrast, cultivars with superior performance on deep clay soils in the northern cropping region, such as SeriM82, Baxter, Babax, and Dharwar Dry exhibited a narrower angle of seminal axes. The wheat genotypes also showed significant variation in fractal dimension (D). The D values calculated for the individual segments of each root system suggested that, compared to the standard cultivar Hartog, the drought-tolerant genotypes adapted to the northern region tended to distribute relatively more roots in the soil volume directly underneath the plant. These findings suggest that wheat root system architecture is closely linked to the angle of seminal root axes at the seedling stage. The implications of genotypic variation in the seminal root characteristics and fractal dimension for specific adaptation to drought environment types are discussed with emphasis on the possible exploitation of root architectural traits in breeding for improved wheat cultivars for water-limited environments.
Resumo:
Better understanding of root system structure and function is critical to crop improvement in water-limited environments. The aims of this study were to examine root system characteristics of two wheat genotypes contrasting in tolerance to water limitation and to assess the functional implications on adaptation to water-limited environments of any differences found. The drought tolerant barley variety, Mackay, was also included to allow inter-species comparison. Single plants were grown in large, soil-filled root-observation chambers. Root growth was monitored by digital imaging and water extraction was measured. Root architecture differed markedly among the genotypes. The drought-tolerant wheat (cv. SeriM82) had a compact root system, while roots of barley cv. Mackay occupied the largest soil volume. Relative to the standard wheat variety (Hartog), SeriM82 had a more uniform rooting pattern and greater root length at depth. Despite the more compact root architecture of SeriM82, total water extracted did not differ between wheat genotypes. To quantify the value of these adaptive traits, a simulation analysis was conducted with the cropping system model APSIM, for a wide range of environments in southern Queensland, Australia. The analysis indicated a mean relative yield benefit of 14.5% in water-deficit seasons. Each additional millimetre of water extracted during grain filling generated an extra 55 kg ha-1 of grain yield. The functional implications of root traits on temporal patterns and total amount of water capture, and their importance in crop adaptation to specific water-limited environments, are discussed.
Resumo:
Consonance in urban form is contingent on the continuity of the fine grain architectural features that are imbued in the commodity of the evolved historic urban fabric. A city's past can be viewed therefore as a repository of urban form characteristics from which concise architectural responses can result in a congruent urban landscape. This thesis proposes new methods to evaluate the interplay of architectural elements that can be traced throughout the lifespan of the particular evolving urban areas under scrutiny, and postulates a theory of how the mapping of historical urban form can correlate with deriving parameters for new buildings.