957 resultados para archaeological black earth
Resumo:
An integrated stratigraphic analysis has been made of the Tarcău Nappe (Moldavidian Domain, Eastern Romanian Carpathians), coupled with a geochemical study of organic-rich beds. Two Main Sequence Boundaries (Early Oligocene and near to the Oligocene–Aquitanian boundary, respectively) divide the sedimentary record into three depositional sequences. The sedimentation occurred in the central area of a basin supplied by different and opposite sources. The high amount of siliciclastics at the beginning of the Miocene marks the activation of the “foredeep stage”. The successions studied are younger than previously thought and they more accurately date the deformation of the different Miocene phases affecting the Moldavidian Basin. The intervals with black shales identified are related to two main separate anoxic episodes with an age not older than Late Rupelian and not before Late Chattian. The most important organic-rich beds correspond to the Lower Menilites, Bituminous Marls and Lower Dysodilic Shales Members (Interval 2). These constitute a good potential source rock for petroleum, with homogeneous Type II oil-prone organic matter, highly lipidic and thermally immature. The deposition of black shales has been interpreted as occurring within a deep, periodically isolated and tectonically controlled basin.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte réduite de la mer Méditerranée et de la mer Noire : dédiée et présentée a S.A.R. M. le duc d'Angoulême..., par P. Lapie, géographe, Directeur du Cabinet topographique du Roi ; gravé par P.A.F. Tardieu. It was published by Rey et Gravier, libraires Quai des Augustins, no. 55 in 1814. Scale [ca. 1:35,500]. Covers Mediterranean Sea, Black Sea, and coasts of Europe, North Africa, and the Middle East. Map in French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the World Miller Cylindrical projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, shoreline features, and more. Relief shown pictorially. Depths shown by soundings. Includes also inset map of the Sea of Azov.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Umriss des Schwarzen Meeres des Bosphorus, des Propontes, des Hellesponts, des Archipelagus nebst den Küsten, nach den neuesten Bericht von D.F. Sotzmann ; gestochen von Heinrich Kliewer. It was published by Oehmigke in 1803. Scale [ca. 1:5,500,000]. Covers the Black Sea and Sea of Marmara regions. Map in German. The image inside the map neatline is georeferenced to the surface of the earth and fit to the World Miller Cylindrical projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, territorial boundaries, shoreline features, and more. Relief shown by hachures. Includes inset map of the Sea of Marmara and 4 views of the fortifications of the Dardanelles Strait (Turkey).This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte de la partie septentrionale de l'Empire Otoman : dédiée a Monseigneur le comte de Vergennes--, par ... Rizzi Zannoni, de l'Académie Royale des Sciences et Belles Lettres de Gottingue, Pr. Ingénieur, Géographe du Roy ; Perrier sculpsit ; Bourgoin scripsit. It was published in 1774. Scale [ca. 1:1,450,000]. Covers the Black Sea and Caucasus regions. This layer is image 1 of 3 total images of the three sheet source map, representing the western portion of the map. Map in French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Europe Lambert Conformal Conic coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, roads, cities and other human settlements, territorial boundaries, shoreline features, and more. Relief shown by hachures.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte de la partie septentrionale de l'Empire Otoman : dédiée a Monseigneur le comte de Vergennes--, par ... Rizzi Zannoni, de l'Académie Royale des Sciences et Belles Lettres de Gottingue, Pr. Ingénieur, Géographe du Roy ; Perrier sculpsit ; Bourgoin scripsit. It was published in 1774. Scale [ca. 1:1,450,000]. Covers the Black Sea and Caucasus regions. This layer is image 2 of 3 total images of the three sheet source map, representing the central portion of the map. Map in French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Europe Lambert Conformal Conic coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, roads, cities and other human settlements, territorial boundaries, shoreline features, and more. Relief shown by hachures.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte de la partie septentrionale de l'Empire Otoman : dédiée a Monseigneur le comte de Vergennes--, par ... Rizzi Zannoni, de l'Académie Royale des Sciences et Belles Lettres de Gottingue, Pr. Ingénieur, Géographe du Roy ; Perrier sculpsit ; Bourgoin scripsit. It was published in 1774. Scale [ca. 1:1,450,000]. Covers the Black Sea and Caucasus regions. This layer is image 3 of 3 total images of the three sheet source map, representing the eastern portion of the map. Map in French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Europe Lambert Conformal Conic coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, roads, cities and other human settlements, territorial boundaries, shoreline features, and more. Relief shown by hachures.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte archéologique et topographique des ruines de Carthage : dressée d'après les relevés de M. l'adjoint du génie Bordy, avec le concours de MM. le R. P. Delattre, ... le général Dolot,... P. Gauckler. It was published by Service géographique de l'armée, ca. 1895. Scale 1:5,000. Covers Carthage, Tunis, Tunisia. Map in French.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM Zone 32N, meters, WGS 1984) projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and towns, villages, roads, railroads and stations, selected buildings and built-up areas, shoreline features, and more. Relief shown by contours and hachures. Overprinted to show archaeological sites.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
We present an overview on different environmental zones within coastal areas and summarise the physical basis behind the three most important methods that are available to date Holocene coastal sediments. Besides radiocarbon and uranium series dating, Optically Stimulated Luminescence (Osl) has increasingly been applied for dating in coastal settings over the past decade. This is illustrated by a number of case studies showing that Osl can be applied to sediments from almost any kind of coastal environment, covering a potential dating range from some years up to several hundred thousand years. Osl dating may hence be the method of choice for deciphering natural environmental change along coasts as well as the presence and the impact of human occupation in such areas. In addition, we briefly show how and where these dating methods could be applied to constrain the palaeo-environmental context of an archaeological site at Vohemar in north-eastern Madagascar.
Resumo:
Subseafloor sediments harbor over half of all prokaryotic cells on Earth (Whitman et al., 1998). This immense number is calculated from numerous microscopic acridine orange direct counts (AODCs) conducted on sediment cores drilled during the Ocean Drilling Program (ODP) (Parkes et al., 1994, doi:10.1038/371410a0, 2000, doi:10.1007/PL00010971). Because these counts cannot differentiate between living and inactive or even dead cells (Kepner and Pratt, 1994; Morita, 1997), the population size of living microorganisms has recently been enumerated for ODP Leg 201 sediment samples from the equatorial Pacific and the Peru margin using ribosomal ribonucleic acid targeting catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) (Schippers et al., 2005, doi:10.1038/nature03302). A large fraction of the subseafloor prokaryotes were alive, even in very old (16 Ma) and deep (>400 m) sediments. In this study, black shale samples from the Demerara Rise (Erbacher, Mosher, Malone, et al., 2004, doi:10.2973/odp.proc.ir.207.2004) were analyzed using AODC and CARD-FISH to find out if black shales also harbor microorganisms.
Resumo:
Text printed in two columns.
Resumo:
"Describes the film made by the Los Angeles County Sanitation Districts for the Federal solid waste management program under contract No. PH-OS-DQ-66."
Resumo:
Title within ornamental border, title in red and black.