975 resultados para anti-inflammation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Le but final de ce projet est d'utiliser des cellules T ou des cellules souches mésenchymateuses modifiées génétiquement afin de surexprimer localement les deux chémokines CXCL13 et CCL2 ensemble ou chacune séparément à l'intérieur d'une tumeur solide. CXCL13 est supposé induire des structures lymphoïdes ectopiques. Un niveau élevé de CCL2 est présumé initier une inflammation aiguë. La combinaison des deux effets amène à un nouveau modèle d'étude des mécanismes régulateur de la tolérance périphérique et de l'immunité tumorale. Les connaissances acquises grâce à ce modèle pourraient permettre le développement ou l'amélioration des thérapies immunes du cancer. Le but premier de ce travail a été l'établissement d'un modèle génétique de la souris permettant d'exprimer spécifiquement dans la tumeur les deux chémokines d'intérêt à des niveaux élevés. Pour accomplir cette tâche, qui est en fait une thérapie génétique de tumeurs solides, deux types de cellules porteuses potentielles ont été évaluées. Des cellules CD8+ T et des cellules mésenchymateuses de la moelle osseuse transférées dans des receveurs portant une tumeur. Si on pouvait répondre aux besoins de la thérapie génétique, indépendamment de la thérapie immune envisagée, on posséderait là un outil précieux pour bien d'autres approches thérapeutiques. Plusieurs lignées de souris transgéniques ont été générées comme source de cellules CD8+ T modifiées afin d'exprimer les chémokines d'intérêt. Dans une approche doublement transgénique les propriétés de deux promoteurs spécifiques de cellules T ont été combinées en utilisant la technologie Cre-loxP. Le promoteur de granzyme B confère une dépendance d'activation et le promoteur distal de lck assure une forte expression constitutive dès que les cellules CD8+ T ont été activées. Les transgènes construits ont montré une bonne performance in vivo et des souris qui expriment CCL2 dans des cellules CD8+ T activées ont été obtenues. Ces cellules peuvent maintenant être utilisées avec différents protocoles pour transférer des cellules T cytotoxiques (CTL) dans des receveurs porteur d'une tumeur, permettant ainsi d'évaluer leur capacité en tant que porteuse de chémokine d'infiltrer la tumeur. L'établissement de souris transgéniques, qui expriment pareillement CXCL13 est prévu dans un avenir proche. L'évaluation de cellules mésenchymateuses de la moelle osseuse a démontré que ces cellules se greffent efficacement dans le stroma tumoral suite à la co-injection avec des cellules tumorales. Cela représente un outil précieux pour la recherche, vu qu'il permet d'introduire des cellules manipulées dans un modèle tumoral. Les résultats confirment partiellement d'autres résultats rapportés dans un modèle amélioré. Cependant, l'efficacité et la spécificité suggérées de la migration systémique de cellules mésenchymateuses de la moelle osseuse dans une tumeur n'ont pas été observées dans notre modèle, ce qui indique, que ces cellules ne se prêtent pas à une utilisation thérapeutique. Un autre résultat majeur de ce travail est l'établissement de cultures de cellules mésenchymateuses de la moelle osseuse in vitro conditionnées par des tumeurs, ce qui a permis à ces cellules de s'étendre plus rapidement en gardant leur capacité de migration et de greffe. Cela offre un autre outil précieux, vu que la culture in vitro est un pas nécessaire pour une manipulation thérapeutique. Abstract The ultimate aim of the presented project is to use genetically modified T cells or mesenchymal stem cells to locally overexpress the two chemokines CXCL13 and CCL2 together or each one alone inside a solid tumor. CXCL13 is supposed to induce ectopic lymphoid structures and a high level of CCL2 is intended to trigger acute inflamation. The combination of these two effects represents a new model for studying mechanisms that regulate peripheral tolerance and tumor immunity. Gained insights may help developing or improving immunotherapy of cancer. The primary goal of the executed work was the establishment of a genetic mouse model that allows tumor-specific expression of high levels of the two chemokines of interest. For accomplishing this task, which represents gene therapy of solid tumors, two types of potentially useful carrier cells were evaluated. CD8+ T cells and mesenchymal bone marrow cells to be used in adoptive cell transfers into tumor-bearing mice. Irrespectively of the envisaged immunotherapy, satisfaction of so far unmet needs of gene therapy would be a highly valuable tool that may be employed by many other therapeutic approaches, too. Several transgenic mouse lines were generated as a source of CD8+ T cells modified to express the chemokines of interest. In a double transgenic approach the properties of two T cell-specific promoters were combined using Cre-loxP technology. The granzyme B promoter confers activation-dependency and the lck distal promoter assures strong constitutive expression once the CD8+ T cell has been activated. The constructed transgenes showed a good performance in vivo and mice expressing CCL2 in activated CD8+ T cells were obtained. These cells can now be used with different protocols for adoptively transferring cytotoxic T cells (CTL) into tumor-bearing recipients, thus allowing to study their capacity as tumor-infiltrating chemokine carrier. The establishment of transgenic mice likewisely expressing CXCL13 is expected in the near future. In addition, T cells from generated single transgenic mice that have high expression of an EGFP reporter in both CD4+ and CD8+ cells can be easily traced in vivo when setting up adoptive transfer conditions. The evaluation of mesenchymal bone marrow cells demonstrated that these cells can efficiently engraft into tumor stroma upon local coinjection with tumor cells. This represents a valuable tool for research purposes as it allows to introduce manipulated stromal cells into a tumor model. Therefore, the established engraftment model is suited for studying the envisaged immunotherapy. These results confirm to some extend previously reported results in an improved model, however, the suggested systemic tumor homing efficiency and specificity of mesenchymal bone marrow cells was not observed in our model indicating that these cells may not be suited for therapeutic use. Another major result of the presented work is the establishment oftumor-conditioned in vitro culture of mesenchymal bone marrow cells, which allowed to more rapidly expand these cells while maintaining their tumor homing and engrafting capacities. This offers another valuable tool as in vitro culture is a necessary step for therapeutic manipulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High postprandial levels of TAG may further induce endothelial dysfunction and inflammation in subjects with high fasting levels of TAG, an effect that seems to be related to oxidative stress. The present study investigated whether minor compounds of olive oil with antioxidant activity decrease postprandial levels of soluble isoforms of intercellular adhesion molecule 1 (sICAM-1) and vascular cell adhesion molecule 1 (sVCAM-1), as surrogate markers of vascular inflammation, after a high-fat meal. A randomized crossover and blind trial on fourteen healthy and fourteen hypertriacylglycerolaemic subjects was performed. The study involved a 1-week adaptation lead-in period on a National Cholesterol Education Program Step I diet supplemented with extra-virgin olive oil (EVOO) containing 1125 mg polyphenols/kg and 350 mg tocopherols/kg, or refined olive oil (ROO) with no polyphenols or tocopherols. After a 12 h fast, the participants ate a high-fat meal enriched in EVOO or ROO (50 g/m2 body surface area), which on average provided 3700 kJ energy with a macronutrient profile of 72% fat, 22% carbohydrate and 6% protein. Blood samples drawn hourly over the following 8 h demonstrated a similar postprandial TAG response for both EVOO and ROO meals. However, in both healthy and hypertriacylglycerolaemic subjects the net incremental area under the curve for sICAM-1 and sVCAM-1 were significantly lower after the EVOO meal. In conclusion,the consumption of EVOO with a high content of minor antioxidant compounds may have postprandial anti-inflammatory protective effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little information is available as to whether doses of iodide similar to those recommended in clinical practice for the prevention of iodine deficiency in pregnant women affect thyroid function. The aim of the present study was to analyse whether doses of iodide can affect thyroid function in adults, and evaluate its effect on plasma markers of oxidative stress, inflammation and acute-phase proteins. A total of thirty healthy volunteers (ten men and twenty women) with normal thyroid function were randomly assigned to three groups (n 10). Each group received a daily dose of 100, 200 or 300 μg of iodide in the form of KI for 6 months. Free tetraiodothyronine (FT4) levels at day 60 of the study were higher in the groups treated with 200 and 300 μg (P = 0·01), and correlated with the increase in urinary iodine (r 0·50, P = 0·007). This correlation lost its significance after adjustment for the baseline FT4. The baseline urinary iodine and FT4 correlated positively with the baseline glutathione peroxidase. On day 60, urinary iodine correlated with C-reactive protein (r 0·461, P = 0·018), and free triiodothyronine correlated with IL-6 (r - 0·429, P = 0·025). On day 60, the changes produced in urinary iodine correlated significantly with the changes produced in α1-antitrypsin (r 0·475, P = 0·014) and ceruloplasmin (r 0·599, P = 0·001). The changes in thyroid-stimulating hormone correlated significantly with the changes in α1-antitrypsin (r - 0·521, P = 0·005) and ceruloplasmin (r - 0·459, P = 0·016). In conclusion, the administration of an iodide supplement between 100 and 300 μg/d did not modify thyroid function in a population with adequate iodine intake. The results also showed a slight anti-inflammatory and antioxidative action of iodide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study evaluated the anti-inflammatory and analgesic properties of Agave sisalana Perrine in classic models of inflammation and pain. The hexanic fraction of A. sisalana (HFAS) was obtained by acid hydrolysis followed by hexanic reflux. Anti-inflammatory properties were examined in three acute mouse models (xylene ear oedema, hind paw oedema and pleurisy) and a chronic mouse model (granuloma cotton pellet). The antinociceptive potential was evaluated in chemical (acetic-acid) and thermal (tail-flick and hot-plate test) models of pain. When given orally, HFAS (5, 10, 25 and 50 mg/kg) reduced ear oedema (p < 0.0001; 52%, 71%, 62% and 42%, respectively). HFAS also reduced hind paw oedema at doses of 10 mg/kg and 25 mg/kg (p < 0.05; 42% and 58%, respectively) and pleurisy at doses of 10 mg/kg and 25 mg/kg (41% and 50%, respectively). In a chronic model, HFAS reduced inflammation by 46% and 58% at doses of 10 mg/kg and 25 mg/kg, respectively. Moreover, this fraction showed analgesic properties against the abdominal writhing in an acetic acid model (at doses of 5-25 mg/kg) with inhibitory rates of 24%, 54% and 48%. The HFAS also showed an increased latency time in the hot-plate (23% and 28%) and tail-flick tests (61% and 66%) for the 25 mg/kg and 50 mg/kg doses, respectively. These results suggest that HFAS has anti-inflammatory and analgesic properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans are not programmed to be inactive. The combination of both accelerated sedentary lifestyle and constant food availability disturbs ancient metabolic processes leading to excessive storage of energy in tissue, dyslipidaemia and insulin resistance. As a consequence, the prevalence of Type 2 diabetes, obesity and the metabolic syndrome has increased significantly over the last 30 years. A low level of physical activity and decreased daily energy expenditure contribute to the increased risk of cardiovascular morbidity and mortality following atherosclerotic vascular damage. Physical inactivity leads to the accumulation of visceral fat and consequently the activation of the oxidative stress/inflammation cascade, which promotes the development of atherosclerosis. Considering physical activity as a 'natural' programmed state, it is assumed that it possesses atheroprotective properties. Exercise prevents plaque development and induces the regression of coronary stenosis. Furthermore, experimental studies have revealed that exercise prevents the conversion of plaques into a vulnerable phenotype, thus preventing the appearance of fatal lesions. Exercise promotes atheroprotection possibly by reducing or preventing oxidative stress and inflammation through at least two distinct pathways. Exercise, through laminar shear stress activation, down-regulates endothelial AT1R (angiotensin II type 1 receptor) expression, leading to decreases in NADPH oxidase activity and superoxide anion production, which in turn decreases ROS (reactive oxygen species) generation, and preserves endothelial NO bioavailability and its protective anti-atherogenic effects. Contracting skeletal muscle now emerges as a new organ that releases anti-inflammatory cytokines, such as IL-6 (interleukin-6). IL-6 inhibits TNF-α (tumour necrosis factor-α) production in adipose tissue and macrophages. The down-regulation of TNF-α induced by skeletal-muscle-derived IL-6 may also participate in mediating the atheroprotective effect of physical activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumoral necrosis factor α plays a central role in both the inflammatory response and that of the immune system. Thus, its blockade with the so-called anti-TNF agents (infliximab, etanercept, adalimumab, certolizumab pegol, and golimumab) has turned into the most important tool in the management of a variety of disorders, such as rheumatoid arthritis, spondyloarthropatties, inflammatory bowel disease, and psoriasis. Nonetheless, theoretically, some other autoimmune disorders may benefit from these agents. Our aim is to review these off-label uses of anti-TNF blockers in three common conditions: Behçet's disease, sarcoidosis, and noninfectious uveitis. Due to the insufficient number of adequate clinical trials and consequently to their lower prevalence compared to other immune disorders, this review is mainly based on case reports and case series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Behçet's disease (BD) is universally recognized as a multisystemic inflammatory disease of unknown etiology with chronic course and unpredictable exacerbations: its clinical spectrum varies from pure vasculitic manifestations with thrombotic complications to protean inflammatory involvement of multiple organs and tissues. Treatment has been revolutionized by the progressed knowledge in the pathogenetic mechanisms of BD, involving dysfunction and oversecretion of multiple proinflammatory molecules, chiefly tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, and IL-6. However, although biological treatment with anti-TNF-α agents has been largely demonstrated to be effective in BD, not all patients are definite responders, and this beneficial response might drop off over time. Therefore, additional therapies for a subset of refractory patients with BD are inevitably needed. Different agents targeting various cytokines and their receptors or cell surface molecules have been studied: the IL-1 receptor has been targeted by anakinra, the IL-1 by canakinumab and gevokizumab, the IL-6 receptor by tocilizumab, the IL12/23 receptor by ustekinumab, and the B-lymphocyte antigen CD-20 by rituximab. The aim of this review is to summarize all current experiences and the most recent evidence regarding these novel approaches with biological drugs other than TNF-α blockers in BD, providing a valuable addition to the actually available therapeutic armamentarium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Omega-3 fatty acids (ω-3 FAs) have potential anti-inflammatory activity in a variety of inflammatory human diseases, but the mechanisms remain poorly understood. Here we show that stimulation of macrophages with ω-3 FAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and other family members, abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. In addition, G protein-coupled receptor 120 (GPR120) and GPR40 and their downstream scaffold protein β-arrestin-2 were shown to be involved in inflammasome inhibition induced by ω-3 FAs. Importantly, ω-3 FAs also prevented NLRP3 inflammasome-dependent inflammation and metabolic disorder in a high-fat-diet-induced type 2 diabetes model. Our results reveal a mechanism through which ω-3 FAs repress inflammation and prevent inflammation-driven diseases and suggest the potential clinical use of ω-3 FAs in gout, autoinflammatory syndromes, or other NLRP3 inflammasome-driven inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: We report the impact of canakinumab, a fully human anti-interleukin-1β monoclonal antibody, on inflammation and health-related quality of life (HRQoL) in patients with difficult-to-treat Gouty Arthritis. METHODS: In this eight-week, single-blind, double-dummy, dose-ranging study, patients with acute Gouty Arthritis flares who were unresponsive or intolerant to--or had contraindications for--non-steroidal anti-inflammatory drugs and/or colchicine were randomized to receive a single subcutaneous dose of canakinumab (10, 25, 50, 90, or 150 mg) (N = 143) or an intramuscular dose of triamcinolone acetonide 40 mg (N = 57). Patients assessed pain using a Likert scale, physicians assessed clinical signs of joint inflammation, and HRQoL was measured using the 36-item Short-Form Health Survey (SF-36) (acute version). RESULTS: At baseline, 98% of patients were suffering from moderate-to-extreme pain. The percentage of patients with no or mild pain was numerically greater in most canakinumab groups compared with triamcinolone acetonide from 24 to 72 hours post-dose; the difference was statistically significant for canakinumab 150 mg at these time points (P < 0.05). Treatment with canakinumab 150 mg was associated with statistically significant lower Likert scores for tenderness (odds ratio (OR), 3.2; 95% confidence interval (CI), 1.27 to 7.89; P = 0.014) and swelling (OR, 2.7; 95% CI, 1.09 to 6.50, P = 0.032) at 72 hours compared with triamcinolone acetonide. Median C-reactive protein and serum amyloid A levels were normalized by seven days post-dose in most canakinumab groups, but remained elevated in the triamcinolone acetonide group. Improvements in physical health were observed at seven days post-dose in all treatment groups; increases in scores were highest for canakinumab 150 mg. In this group, the mean SF-36 physical component summary score increased by 12.0 points from baseline to 48.3 at seven days post-dose. SF-36 scores for physical functioning and bodily pain for the canakinumab 150 mg group approached those for the US general population by seven days post-dose and reached norm values by eight weeks post-dose. CONCLUSIONS: Canakinumab 150 mg provided significantly greater and more rapid reduction in pain and signs and symptoms of inflammation compared with triamcinolone acetonide 40 mg. Improvements in HRQoL were seen in both treatment groups with a faster onset with canakinumab 150 mg compared with triamcinolone acetonide 40 mg. TRIAL REGISTRATION: clinicaltrials.gov: NCT00798369.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three isotypes of peroxisome proliferator-activated receptors (PPARs), PPARalpha, beta/delta and gamma, are ligand-inducible transcription factors that belong to the nuclear hormone receptor family. PPARs are implicated in the control of inflammatory responses and in energy homeostasis and thus, can be defined as metabolic and anti-inflammatory transcription factors. They exert their anti-inflammatory effects by inhibiting the induction of pro-inflammatory cytokines, adhesion molecules and extracellular matrix proteins or by stimulating the production of anti-inflammatory molecules. Furthermore, PPARs modulate the proliferation, differentiation and survival of immune cells including macrophages, B cells and T cells. This review discusses the molecular mechanisms by which PPARs and their ligands modulate the inflammatory response. In addition, it presents recent developments implicating PPAR specific ligands in potential treatments of inflammation-related diseases, such as atherosclerosis, inflammatory bowel diseases, Parkinson's and Alzheimer's diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fungal infections represent a serious threat, particularly in immunocompromised patients. Interleukin-1beta (IL-1beta) is a key pro-inflammatory factor in innate antifungal immunity. The mechanism by which the mammalian immune system regulates IL-1beta production after fungal recognition is unclear. Two signals are generally required for IL-1beta production: an NF-kappaB-dependent signal that induces the synthesis of pro-IL-1beta (p35), and a second signal that triggers proteolytic pro-IL-1beta processing to produce bioactive IL-1beta (p17) via Caspase-1-containing multiprotein complexes called inflammasomes. Here we demonstrate that the tyrosine kinase Syk, operating downstream of several immunoreceptor tyrosine-based activation motif (ITAM)-coupled fungal pattern recognition receptors, controls both pro-IL-1beta synthesis and inflammasome activation after cell stimulation with Candida albicans. Whereas Syk signalling for pro-IL-1beta synthesis selectively uses the Card9 pathway, inflammasome activation by the fungus involves reactive oxygen species production and potassium efflux. Genetic deletion or pharmalogical inhibition of Syk selectively abrogated inflammasome activation by C. albicans but not by inflammasome activators such as Salmonella typhimurium or the bacterial toxin nigericin. Nlrp3 (also known as NALP3) was identified as the critical NOD-like receptor family member that transduces the fungal recognition signal to the inflammasome adaptor Asc (Pycard) for Caspase-1 (Casp1) activation and pro-IL-1beta processing. Consistent with an essential role for Nlrp3 inflammasomes in antifungal immunity, we show that Nlrp3-deficient mice are hypersusceptible to Candida albicans infection. Thus, our results demonstrate the molecular basis for IL-1beta production after fungal infection and identify a crucial function for the Nlrp3 inflammasome in mammalian host defence in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last 15 years, the therapeutical options for the treatment of chronic inflammatory diseases in rheumatology have increased a lot. Nevertheless, some patients do not respond or respond partially to the current therapies--including to the biologics therapy. Tofacitinib (Xeljanz) is now on the Swiss market. It inhibits the JAK pathway. Tofacitinib--as monotherapy or with methotrexate--improves the control of rheumatoid arthritis (RA). In a comparative study, tofacitinib was as effective as adalimumab. Further, tofacitinib reduced structural damages in RA and is considered as an alternative, in case of non-response, to anti-TNF and probably to other biologics therapy. The side effects are upper respiratory tract and opportunist infections and tuberculosis. Blood count, lipids, kidney function, liver tests, CK and blood pressure have to be monitored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Purpose: The primary treatment goals for gouty arthritis (GA) are rapid relief of pain and inflammation during acute attacks, and long-term hyperuricemia management. A post-hoc analysis of 2 pivotal trials was performed to assess efficacy and safety of canakinumab (CAN), a fully human monoclonal anti-IL-1_ antibody, vs triamcinolone acetonide (TA) in GA patients unable to use NSAIDs and colchicine, and who were on stable urate lowering therapy (ULT) or unable to use ULT. Methods: In these 12-week, randomized, multicenter, double-blind, double-dummy, active-controlled studies (_-RELIEVED and _-RELIEVED II), patients had to have frequent attacks (_3 attacks in previous year) meeting preliminary GA ACR 1977 criteria, and were unresponsive, intolerant, or contraindicated to NSAIDs and/or colchicine, and if on ULT, ULT was stable. Patients were randomized during an acute attack to single dose CAN 150 mg s.c. or TA 40 mg i.m. and were redosed "on demand" for each new attack. Patients completing the core studies were enrolled into blinded 12-week extension studies to further investigate on-demand use of CAN vs TA for new attacks. The subpopulation selected for this post-hoc analysis was (a) unable to use NSAIDs and colchicine due to contraindication, intolerance or lack of efficacy for these drugs, and (b) currently on ULT, or contraindication or previous failure of ULT, as determined by investigators. Subpopulation comprised 101 patients (51 CAN; 50 TA) out of 454 total. Results: Several co-morbidities, including hypertension (56%), obesity (56%), diabetes (18%), and ischemic heart disease (13%) were reported in 90% of this subpopulation. Pain intensity (VAS 100 mm scale) was comparable between CAN and TA treatment groups at baseline (least-square [LS] mean 74.6 and 74.4 mm, respectively). A significantly lower pain score was reported with CAN vs TA at 72 hours post dose (1st co-primary endpoint on baseline flare; LS mean, 23.5 vs 33.6 mm; difference _10.2 mm; 95% CI, _19.9, _0.4; P_0.0208 [1-sided]). CAN significantly reduced risk for their first new attacks by 61% vs TA (HR 0.39; 95% CI, 0.17-0.91, P_0.0151 [1-sided]) for the first 12 weeks (2nd co-primary endpoint), and by 61% vs TA (HR 0.39; 95% CI, 0.19-0.79, P_0.0047 [1-sided]) over 24 weeks. Serum urate levels increased for CAN vs TA with mean change from baseline reaching a maximum of _0.7 _ 2.0 vs _0.1 _ 1.8 mg/dL at 8 weeks, and _0.3 _ 2.0 vs _0.2 _ 1.4 mg/dL at end of study (all had GA attack at baseline). Adverse Events (AEs) were reported in 33 (66%) CAN and 24 (47.1%) TA patients. Infections and infestations were the most common AEs, reported in 10 (20%) and 5 (10%) patients treated with CAN and TA respectively. Incidence of SAEs was comparable between CAN (gastritis, gastroenteritis, chronic renal failure) and TA (aortic valve incompetence, cardiomyopathy, aortic stenosis, diarrohea, nausea, vomiting, bicuspid aortic valve) groups (2 [4.0%] vs 2 [3.9%]). Conclusion: CAN provided superior pain relief and reduced risk of new attack in highly-comorbid GA patients unable to use NSAIDs and colchicine, and who were currently on stable ULT or unable to use ULT. The safety profile in this post-hoc subpopulation was consistent with the overall _-RELIEVED and _-RELIEVED II population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-steroidal anti-inflammatory drugs (NSAIDs) and specific inhibitors of cyclooxygenase (COX)-2, are therapeutic groups widely used for the treatment of pain, inflammation and fever. There is growing experimental and clinical evidence indicating NSAIDs and COX-2 inhibitors also have anti-cancer activity. Epidemiological studies have shown that regular use of Aspirin and other NSAIDs reduces the risk of developing cancer, in particular of the colon. Molecular pathology studies have revealed that COX-2 is expressed by cancer cells and cells of the tumor stroma during tumor progression and in response to chemotherapy or radiotherapy. Experimental studies have demonstrated that COX-2 over expression promotes tumorigenesis, and that NSAIDs and COX-2 inhibitors suppress tumorigenesis and tumor progression. Clinical trials have shown that NSAIDs and COX-2 inhibitors suppress colon polyp formation and malignant progression in patients with familial adenomatous polyposis (FAP) syndrome. Recent advances in the understanding of the cellular and molecular mechanisms of the anti-cancer effects of NSAIDs and COX-2 inhibitors have demonstrated that these drugs target both tumor cells and the tumor vasculature. The therapeutic benefits of COX-2 inhibitors in the treatment of human cancer in combination with chemotherapy or radiotherapy are currently being tested in clinical trials. In this article we will review recent advances in the understanding of the anti-tumor mechanisms of these drugs and discuss their potential application in clinical oncology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that the eye is a mineralocorticoid-sensitive organ and we now question the role of mineralocorticoid receptor (MR) in ocular inflammation. The endotoxin-induced uveitis (EIU), a rat model of human intraocular inflammation, was induced by systemic administration of lipopolysaccharide (LPS). Evaluations were made 6 and 24 hours after intraocular injection of aldosterone (simultaneous to LPS injection). Three hours after onset of EIU, the MR and the glucocorticoid metabolizing enzyme 11-beta hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression were down-regulated in iris/ciliary body and the corticosterone concentration was increased in aqueous humor, altering the normal MR/glucocorticoid receptor (GR) balance. At 24 hours, the GR expression was also decreased. In EIU, aldosterone reduced the intensity of clinical inflammation in a dose-dependent manner. The clinical benefit of aldosterone was abrogated in the presence of the MR antagonist (RU26752) and only partially with the GR antagonist (RU38486). Aldosterone reduced the release of inflammatory mediators (6 and 24 hours: TNF-α, IFN-γ, MIP-1α) in aqueous humor and the number of activated microglia/macrophages. Aldosterone partly prevented the uveitis-induced MR down-regulation. These results suggest that MR expression and activation in iris/ciliary body could protect the ocular structures against damages induced by EIU.