907 resultados para análise de séries temporais


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho propõe um instrumento capaz de absorver choques no par BRL/USD, garantindo ao seu detentor a possibilidade de realizar a conversão entre essas moedas a uma taxa observada recentemente. O Volatility Triggered Range Forward assemelha-se a um instrumento forward comum, cujo preço de entrega não é conhecido inicialmente, mas definido no momento em que um nível de volatilidade pré-determinado for atingido na cotação das moedas ao longo da vida do instrumento. Seu cronograma de ajustes pode ser definido para um número qualquer de períodos. Seu apreçamento e controle de riscos é baseado em uma árvore trinomial ponderada entre dois possíveis regimes de volatilidade. Esses regimes são determinados após um estudo na série BRL/USD no período entre 2003 e 2009, basedo em um modelo Switching Autoregressive Conditional Heteroskedasticity (SWARCH).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com origem no setor imobiliário americano, a crise de crédito de 2008 gerou grandes perdas nos mercados ao redor do mundo. O mês de outubro do mesmo ano concentrou a maior parte da turbulência, apresentando também uma explosão na volatilidade. Em meados de 2006 e 2007, o VIX, um índice de volatilidade implícita das opções do S&P500, registrou uma elevação de patamar, sinalizando o possível desequilíbrio existente no mercado americano. Esta dissertação analisa se o consenso de que a volatilidade implícita é a melhor previsora da volatilidade futura permanece durante o período de crise. Os resultados indicam que o VIX perde poder explicativo ao se passar do período sem crise para o de crise, sendo ultrapassado pela volatilidade realizada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O problema da identificação de equações de oferta e demanda de crédito para verificação da existência do canal de crédito tem sido sendo bastante discutido nas últimas décadas. Este trabalho avalia a estratégia de identificação via estimação de um modelo de um Modelo Vetorial de Correção de Erros para determinar a relevância do canal de crédito no Brasil. Foram utilizados dados agregados mensais compreendendo o período de 2001 até 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A inclusão de momentos superiores no apreçamento de ativos do modelo CAPM vem sendo bastante discutido nas últimas décadas. Esse trabalho realiza um teste empírico para o modelo CAPM estendido para os 3o e 4o momentos, no qual as assimetrias e curtoses dos ativos também são apreçadas. O teste foi realizado utilizando o Método Generalizado dos Momentos (MGM), em que todas as condições de momento derivam do modelo teórico. Os dados utilizados foram os retornos diários das ações mais negociadas na Bovespa entre 2004 e 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis at hand adds to the existing literature by investigating the relationship between economic growth and outward foreign direct investments (OFDI) on a set of 16 emerging countries. Two different econometric techniques are employed: a panel data regression analysis and a time-series causality analysis. Results from the regression analysis indicate a positive and significant correlation between OFDI and economic growth. Additionally, the coefficient for the OFDI variable is robust in the sense specified by the Extreme Bound Analysis (EBA). On the other hand, the findings of the causality analysis are particularly heterogeneous. The vector autoregression (VAR) and the vector error correction model (VECM) approaches identify unidirectional Granger causality running either from OFDI to GDP or from GDP to OFDI in six countries. In four economies causality among the two variables is bidirectional, whereas in five countries no causality relationship between OFDI and GDP seems to be present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo do presente trabalho é utilizar modelos econométricos de séries de tempo para previsão do comportamento da inadimplência agregada utilizando um conjunto amplo de informação, através dos métodos FAVAR (Factor-Augmented Vector Autoregressive) de Bernanke, Boivin e Eliasz (2005) e FAVECM (Factor-augmented Error Correction Models) de Baneerjee e Marcellino (2008). A partir disso, foram construídas previsões fora da amostra de modo a comparar a eficácia de projeção dos modelos contra modelos univariados mais simples - ARIMA - modelo auto-regressivo integrado de média móvel e SARIMA - modelo sazonal auto-regressivo integrado de média móvel. Para avaliação da eficácia preditiva foi utilizada a metodologia MCS (Model Confidence Set) de Hansen, Lunde e James (2011) Essa metodologia permite comparar a superioridade de modelos temporais vis-à-vis a outros modelos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O trabalho testa o poder de previsão da volatilidade futura, de cinco modelos : um modelo ingênuo, do tipo martingale, o modelo sugerido pelo JPMorgan em seu RiskMetrics™, o modelo GARCH-Generalized Autoregressive Conditional Heteroscedasticity, o modelo da volatilidade implícita e combinações de Risk:MetricsTM com volatilidade implícita e de GARCH com volatilidade implícita. A série estudada é a volatilidade para vinte e cinco dias, dos retornos diários do contrato futuro de Ibovespa, negociado na BM&F - Bolsa de Mercadorias e Futuros. Particularidades brasileiras são introduzidas na. estimação dos parâmetros do modelo GARCH. O poder de previsão é testado com medidas estatísticas, envolvendo equações de perdas (loss functions) simétricas e assimétricas, e com uma medida econômica, dada pelo lucro obtido a partir da simulação da realização de operações hedgeadas, sugeridas pelas previsões de volatilidade. Tanto com base nas medidas estatísticas como na medida econômica, o modelo GARCH emerge como o de melhor desempenho. Com base nas medidas estatísticas, esse modelo é particularmente melhor em período de mais alta volatilidade. Com base na medida econômica, contudo, o lucro obtido não é estatisticamente diferente de zero, indicando eficiência do mercado de opções de compra do contrato futuro de Ibovespa, negociado na mesmaBM&F.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação pretende discutir a provisão de sinistros do tipo IBNR, bem como qual a melhor forma de estimar estas provisões. Para tanto, serão utilizados dados reais de uma grande seguradora Brasileira para um produto de seguro de um ramo Não Vida. Serão utilizados no cálculo o clássico método Chain Ladder e em contrapartida um modelo de Espaço de Estados e Filtro de Kalman, discutindo as flexibilidades, vantagens e desvantagens de se utilizar tal metodologia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este tese é composta por quatro ensaios sobre aplicações econométricas em tópicos econômicos relevantes. Os estudos versam sobre consumo de bens não-duráveis e preços de imóveis, capital humano e crescimento econômico, demanda residencial de energia elétrica e, por fim, periodicidade de variáveis fiscais de Estados e Municípios brasileiros. No primeiro artigo, "Non-Durable Consumption and Real-Estate Prices in Brazil: Panel-Data Analysis at the State Level", é investigada a relação entre variação do preço de imóveis e variação no consumo de bens não-duráveis. Os dados coletados permitem a formação de um painel com sete estados brasileiros observados entre 2008- 2012. Os resultados são obtidos a partir da estimação de uma forma reduzida obtida em Campbell e Cocco (2007) que aproxima um modelo estrutural. As estimativas para o caso brasileiro são inferiores as de Campbell e Cocco (2007), que, por sua vez, utilizaram microdados britânicos. O segundo artigo, "Uma medida alternativa de capital humano para o estudo empírico do crescimento", propõe uma forma de mensuração do estoque de capital humano que reflita diretamente preços de mercado, através do valor presente do fluxo de renda real futura. Os impactos dessa medida alternativa são avaliados a partir da estimação da função de produção tradicional dos modelos de crescimento neoclássico. Os dados compõem um painel de 25 países observados entre 1970 e 2010. Um exercício de robustez é realizado para avaliar a estabilidade dos coeficientes estimados diante de variações em variáveis exógenas do modelo. Por sua vez, o terceiro artigo "Household Electricity Demand in Brazil: a microdata approach", parte de dados da Pesquisa de Orçamento Familiar (POF) para mensurar a elasticidade preço da demanda residencial brasileira por energia elétrica. O uso de microdados permite adotar abordagens que levem em consideração a seleção amostral. Seu efeito sobre a demanda de eletricidade é relevante, uma vez que esta demanda é derivada da demanda por estoque de bens duráveis. Nesse contexto, a escolha prévia do estoque de bens duráveis (e consequentemente, a escolha pela intensidade de energia desse estoque) condiciona a demanda por eletricidade dos domicílios. Finalmente, o quarto trabalho, "Interpolação de Variáveis Fiscais Brasileiras usando Representação de Espaço de Estados" procurou sanar o problema de baixa periodicidade da divulgação de séries fiscais de Estados e Municípios brasileiros. Através de técnica de interpolação baseada no Filtro de Kalman, as séries mensais não observadas são projetadas a partir de séries bimestrais parcialmente observadas e covariáveis mensais selecionadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tese é composta de três artigos que analisam a estrutura a termo das taxas de juros usando diferentes bases de dados e modelos. O capítulo 1 propõe um modelo paramétrico de taxas de juros que permite a segmentação e choques locais na estrutura a termo. Adotando dados do tesouro americano, duas versões desse modelo segmentado são implementadas. Baseado em uma sequência de 142 experimentos de previsão, os modelos propostos são comparados à benchmarks e concluí-se que eles performam melhor nos resultados das previsões fora da amostra, especialmente para as maturidades curtas e para o horizonte de previsão de 12 meses. O capítulo 2 acrescenta restrições de não arbitragem ao estimar um modelo polinomial gaussiano dinâmico de estrutura a termo para o mercado de taxas de juros brasileiro. Esse artigo propõe uma importante aproximação para a série temporal dos fatores de risco da estrutura a termo, que permite a extração do prêmio de risco das taxas de juros sem a necessidade de otimização de um modelo dinâmico completo. Essa metodologia tem a vantagem de ser facilmente implementada e obtém uma boa aproximação para o prêmio de risco da estrutura a termo, que pode ser usada em diferentes aplicações. O capítulo 3 modela a dinâmica conjunta das taxas nominais e reais usando um modelo afim de não arbitagem com variáveis macroeconômicas para a estrutura a termo, afim de decompor a diferença entre as taxas nominais e reais em prêmio de risco de inflação e expectativa de inflação no mercado americano. Uma versão sem variáveis macroeconômicas e uma versão com essas variáveis são implementadas e os prêmios de risco de inflação obtidos são pequenos e estáveis no período analisado, porém possuem diferenças na comparação dos dois modelos analisados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mandelbrot (1971) demonstrou a importância de considerar dependências de longo prazo na precificação de ativos - o método tradicional para mensurá-las, encontrado em Hurst (1951), faz uso da estatística R/S. Paralelamente a isso, Box e Jenkins (1976; edição original de 1970) apresentaram sua famosa metodologia para determinação da ordem dos parâmetros de modelos desenvolvidos no contexto de processos com memória de curto prazo, conhecidos por ARIMA (acrônimo do inglês Autoregressive Integrated Moving Average). Estimulados pela percepção de que um modelo que pretenda representar fielmente o processo gerador de dados deva explicar tanto a dinâmica de curto prazo quanto a de longo prazo, Granger e Joyeux (1980) e Hosking (1981) introduziram os modelos ARFIMA (de onde o F adicionado vem de Fractionally), uma generalização da classe ARIMA, nos quais a dependência de longo prazo estimada é relacionada ao valor do parâmetro de integração. Pode-se dizer que a partir de então processos com alto grau de persistência passaram a atrair cada vez mais o interesse de pesquisadores, o que resultou no desenvolvimento de outros métodos para estimá-la, porém sem que algum tenha se sobressaído claramente – e é neste ponto que o presente trabalho se insere. Por meio de simulações, buscou-se: (1) classificar diversos estimadores quanto a sua precisão, o que nos obrigou a; (2) determinar parametrizações razoáveis desses, entendidas aqui como aquelas que minimizam o viés, o erro quadrático médio e o desvio-padrão. Após rever a literatura sobre o tema, abordar estes pontos se mostrou necessário para o objetivo principal: elaborar estratégias de negociação baseadas em projeções feitas a partir da caracterização de dependências em dados intradiários, minuto a minuto, de ações e índices de ações. Foram analisadas as séries de retornos da ação Petrobras PN e do Índice Bovespa, com dados de 01/04/2013 a 31/03/2014. Os softwares usados foram o S-Plus e o R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho primeiramente explora fundamentos teóricos básicos para análise e implementação de algoritmos para a modelagem de séries temporais. A finalidade principal da modelagem de séries temporais será a predição para utilizá-la na arbitragem estatística. As séries utilizadas são retiradas de uma base de histórico do mercado de ações brasileiro. Estratégias de arbitragem estatística, mais especificamente pairs trading, utilizam a característica de reversão à média dos modelos para explorar um lucro potencial quando o módulo do spread está estatisticamente muito afastado de sua média. Além disso, os modelos dinâmicos deste trabalho apresentam parâmetros variantes no tempo que aumentam a sua flexibilidade e adaptabilidade em mudanças estruturais do processo. Os pares do algoritmo de pairs trading são escolhidos selecionando ativos de mesma empresa ou índices e ETFs (Exchange Trade Funds). A validação da escolha dos pares é feita utilizando testes de cointegração. As simulações demonstram os resultados dos testes de cointegração, a variação no tempo dos parâmetros do modelo e o resultado de um portfólio fictício.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o objetivo de mostrar uma aplicação dos modelos da família GARCH a taxas de câmbio, foram utilizadas técnicas estatísticas englobando análise multivariada de componentes principais e análise de séries temporais com modelagem de média e variância (volatilidade), primeiro e segundo momentos respectivamente. A utilização de análise de componentes principais auxilia na redução da dimensão dos dados levando a estimação de um menor número de modelos, sem contudo perder informação do conjunto original desses dados. Já o uso dos modelos GARCH justifica-se pela presença de heterocedasticidade na variância dos retornos das séries de taxas de câmbio. Com base nos modelos estimados foram simuladas novas séries diárias, via método de Monte Carlo (MC), as quais serviram de base para a estimativa de intervalos de confiança para cenários futuros de taxas de câmbio. Para a aplicação proposta foram selecionadas taxas de câmbio com maior market share de acordo com estudo do BIS, divulgado a cada três anos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uma das principais características dos ativos financeiros é a mudança de regime. Os preços dos ativos apresentam pouca variabilidade nos períodos de normalidade e possuem quedas inesperadas e são instáveis nos períodos de crise. Esta tese estuda alocação de portfólio com mudança de regime. O primeiro ensaio considera a decisão ótima de investimento entre os ativos de risco quando o mercado financeiro possui mudança de regime, definindo portfólios ótimos que dependem dos retornos esperados, risco e das crenças sobre o estado do mercado financeiro. O segundo ensaio estuda alocação de portfólio baseada em estimativas do modelo fatorial com mudança de regime e compara com alocações usando modelos fatoriais lineares e momentos amostrais. A mudança de regime tem maior efeito sobre o processo de escolha dos portfólios do que sobre as estimativas usadas para definir as carteiras.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper constructs a unit root test baseei on partially adaptive estimation, which is shown to be robust against non-Gaussian innovations. We show that the limiting distribution of the t-statistic is a convex combination of standard normal and DF distribution. Convergence to the DF distribution is obtaineel when the innovations are Gaussian, implying that the traditional ADF test is a special case of the proposed testo Monte Carlo Experiments indicate that, if innovation has heavy tail distribution or are contaminated by outliers, then the proposed test is more powerful than the traditional ADF testo Nominal interest rates (different maturities) are shown to be stationary according to the robust test but not stationary according to the nonrobust ADF testo This result seems to suggest that the failure of rejecting the null of unit root in nominal interest rate may be due to the use of estimation and hypothesis testing procedures that do not consider the absence of Gaussianity in the data.Our results validate practical restrictions on the behavior of the nominal interest rate imposed by CCAPM, optimal monetary policy and option pricing models.