745 resultados para amylose content
Resumo:
High solids content film-forming poly[styrene-co-(n-butyl acrylate)] [poly(Sty-co-BuA)] latexes armored with Laponite clay platelets have been synthesized by soap-free emulsion copolymerization of styrene and n-butyl acrylate. The polymerizations were performed in batch in the presence of Laponite and a methyl ether acrylateterminated poly(ethylene glycol) macromonomer in order to promote polymer/clay association. The overall polymerization kinetics showed a pronounced effect of clay on nucleation and stabilization of the latex particles. Cryo-transmission electron microscopy observation confirmed the armored morphology and indicated that the majority of Laponite platelets were located at the particle surface. The resulting nanostructured films displayed enhanced mechanical properties.
Resumo:
The effect of alumina content on the mechanical strength of electrical porcelain manufactured by green machining of isostatically pressed blanks was examined with a view to attaining optimal mechanical properties at low sintering temperatures. Porcelain compositions were formulated with four different alumina contents, maintaining the same proportion of the other materials (kaolin, clay and feldspar). Test specimens were isostatically pressed at 70 MPa and machined at high speed into cylindrical test specimens using controlled machining parameters. These specimens were sintered at several temperatures to determine the optimal sintering temperature for each composition, after which their mechanical properties were analyzed by the flexural bend test. The results indicated a correlation between the alumina content and the sintering temperature, and between the flexural strength and its influence on the green machining conditions. An average tensile strength of 786 MPa was attained for the composition with an added content of 30 wt% of commercial alumina sintered at 1250 degrees C, pressed and machined under industrial conditions.
Resumo:
The effect of a lipase-rich fungal enzymatic preparation, produced by a Penicillium sp. during solid-state fermentation, was evaluated in an anaerobic digester treating dairy wastewater with 1200 mg of oil and grease/L The oil and grease hydrolysis step was carried out with 0.1% (w/v) of solid enzymatic preparation at 30 degrees C for 24 h, and resulted in a final free acid concentration eight times higher than the initial value. The digester operated in sequential batches of 48 h at 30 degrees C for 245 days, and had high chemical oxygen demand (COD) removal efficiencies (around 90%) when fed with pre-hydrolyzed wastewater. However, when the pre-hydrolysis step was removed, the anaerobic digester performed poorly (with an average COD removal of 32%), as the oil and grease accumulated in the biomass and effluent oil and grease concentration increased throughout the operational period. PCR-DGGE analysis of the Bacteria and Archaea domains revealed remarkable differences in the microbial profiles in trials conducted with and without the pre-hydrolysis step, indicating that differences observed in overall parameters were intrinsically related to the microbial diversity of the anaerobic sludge. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the main factors affecting the rheological behavior of polyethylene terephtalate (PET) in the linear viscoelastic regime (water content, time delay before test, duration of experiment, and temperature) were accessed. Small amplitude oscillatory shear tests were performed after different time delays ranging from 300 to 5000 s for samples with water contents ranging from 0.02 to 0.45 wt %. Time sweep tests were carried out for different durations to explain the changes undergone by PET before and during small amplitude oscillatory shear measurements. Immediately after the time sweep tests, the PET samples were removed from the rheometer, analyzed by differential scanning calorimetry and their molar mass was obtained by viscometry analysis. It was shown that for all the samples, the delay before test and residence time within the rheometer (i.e. duration of experiment) result in structural changes of the PET samples, such as increase or decrease of molar mass, broadening of molar mass distribution, and branching phenomena. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 3525-3533, 2010
Resumo:
The rheological behavior of milk cream was studied for different fat contents (0.10 to 0.31) and for a wide temperature range (2 and 87C) using a rotational rheometer. Newtonian behavior was observed, except for fat content between 0.20 and 0.31 and temperature between 2 and 33C, where viscoplastic behavior was remarkable. The rheological parameters (Newtonian viscosity, plastic viscosity and yield stress) and density were well correlated to temperature and fat content. Tube friction factor during flow of cream was experimentally obtained at various flow rates, temperatures and tube diameters (86 < Re < 2.3 x 104, 38 < Re(B) < 8.8 x 103, 1.1 x 103 < He < 6.7 x 103). The proposed correlations for density and rheological parameters were applied for the prediction of friction factor for laminar and turbulent flow of cream using well-known equations for Newtonian and viscoplastic flow. The good agreement between experimental and predicted values confirms the reliability of the proposed correlations for describing the flow behavior of cream. PRACTICAL APPLICATIONS This paper presents correlations for the calculation of density and rheological parameters (Newtonian viscosity, Bingham plastic viscosity and yield stress) of milk cream as functions of temperature (2-87C) and fat content (0.10-0.31). Because of the large temperature range, the proposed correlations are useful for process design and optimization in dairy processing. An example of practical application is presented in the text, where the correlations were applied for the prediction of friction factor for laminar and turbulent tube flow of cream using well-known equations for Newtonian and viscoplastic flow, which are summarized in the text. The comparison with experimental data obtained at various flow rates, temperatures and tube diameters showed a good agreement, which confirms the reliability of the proposed correlations.
Resumo:
Objectives - A highly adaptive aspect of human memory is the enhancement of explicit, consciously accessible memory by emotional stimuli. We studied the performance of Alzheimer`s disease (AD) patients and elderly controls using a memory battery with emotional content, and we correlated these results with the amygdala and hippocampus volume. Methods - Twenty controls and 20 early AD patients were subjected to the International Affective Picture System (IAPS) and to magnetic resonance imaging-based volumetric measurements of the medial temporal lobe structures. Results - The results show that excluding control group subjects with 5 or more years of schooling, both groups showed improvement with pleasant or unpleasant figures for the IAPS in an immediate free recall test. Likewise, in a delayed free recall test, both the controls and the AD group showed improvement for pleasant pictures, when education factor was not controlled. The AD group showed improvement in the immediate and delayed free recall test proportional to the medial temporal lobe structures, with no significant clinical correlation between affective valence and amygdala volume. Conclusion - AD patients can correctly identify emotions, at least at this early stage, but this does not improve their memory performance.
Resumo:
The aim of this study was to evaluate the production and the structural and physicochemical properties of RS obtained by molecular mass reduction (enzyme or acid) and hydrothermal treatment of chickpea starch. Native and gelatinized starch were submitted to acid (2 M HCl for 2.5 h) or enzymatic hydrolysis (pullulanase, 40 U/g per 10 h), autoclaved (121 degrees C/30 min), stored under refrigeration (4 degrees C/24 h), and lyophilized. The hydrolysis of starch increased the RS content from 16% to values between 20 and 32%, and the enzymatic treatment of the gelatinized starch was the most efficient. RS showed an increase in water absorption and water solubility indexes due to hydrolytic and thermal process. The processes for obtaining RS changed the crystallinity pattern from C to B. Hydrolysis treatments caused an increase in relative crystallinity due to the greater retrogradation caused by the reduction in MW. RS obtained from hydrolysis showed a reduction in viscosity, indicating the rupture of molecules. The viscosity seemed to be inversely proportional to the RS content in the sample.
Resumo:
The recognition of temporally stable locations with respect to soil water content is of importance for soil water management decisions, especially in sloping land of watersheds. Neutron probe soil water content (0 to 0.8 m), evaluated at 20 dates during a year in the Loess Plateau of China, in a 20 ha watershed dominated by Ust-Sandiic Entisols and Aeolian sandy soils, were used to define their temporal stability through two indices: the standard deviation of relative difference (SDRD) and the mean absolute bias error (MABE). Specific concerns were (a) the relationship of temporal stability with soil depth, (b) the effects of soil texture and land use on temporal stability, and (c) the spatial pattern of the temporal stability. Results showed that temporal stability of soil water content at 0.2 m was significantly weaker than those at the soil depths of 0.6 and 0.8 m. Soil texture can significantly (P<0.05) affect the stability of soil water content except for the existence of an insignificant difference between sandy loam and silt loam textures, while temporal stability of areas covered by bunge needlegrass land was not significantly different from those covered by korshinsk peashrub. Geostatistical analysis showed that the temporal stability was spatially variable in an organized way as inferred by the degree of spatial dependence index. With increasing soil depth, the range of both temporal stability indices showed an increasing trend, being 65.8-120.5 m for SDRD and 148.8-214.1 m for MABE, respectively. This study provides a valuable support for soil water content measurements for soil water management and hydrological applications on sloping land areas. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Long-term vegetation restoration carried out on the slopes of the Loess Plateau of China employed different spatial and temporal land-use patterns but very little is known about the effects of these patterns on soil water-content variability. For this study the small Donggou catchment was selected to investigate soil water-content distributions for three spatial scales, including the entire catchment area, sampling transects, and land-use systems. Gravimetric soil water contents were determined incrementally to a soil depth of 1.20 m, on 10 occasions from April to October, 2007, at approximately 20-day intervals. Results indicated that soil water contents were affected by the six land-use types, resulting in four distinct patterns of vertical distribution of soil moisture (uniform, increasing, decreasing, and fluctuating with soil depth). The soil water content and its variation were also influenced in a complex manner by five land-use patterns distributed along transects following the gradients of five similar slopes. These patterns with contrasting hydrological responses in different components, such as forage land (alfalfa)-cropland-shrubland or shrubland-grassland (bunge needlegrass)-cropland-grassland, showed the highest soil water-content variability. Soil water at the catchment scale exhibited a moderate variability for each measurement date, and the variability of soil water content decreased exponentially with increasing soil water content. The minimum sample size for accurate data for use in a hydrological model for the catchment, for example, required many more samples for drier (69) than for wet (10) conditions. To enhance erosion and runoff control, this study suggested two strategies for land management: (i) to create a mosaic pattern by land-use arrangement that located units with higher infiltration capacities downslope from those with lower soil infiltrabilities; and (ii) raising the soil-infiltration capacity of units within the spatial mosaic pattern where possible.
Resumo:
The knowledge of the relationship between spatial variability of the surface soil water content (theta) and its mean across a spatial domain (theta(m)) is crucial for hydrological modeling and understanding soil water dynamics at different scales. With the aim to compare the soil moisture dynamics and variability between the two land uses and to explore the relationship between the spatial variability of theta and theta(m), this study analyzed sets of surface theta measurements performed with an impedance soil moisture probe, collected 136 times during a period of one year in two transects covering different land uses, i.e., korshinsk peashrub transect (KPT) and bunge needlegrass transect (BNT), in a watershed of the Loess Plateau, China. Results showed that the temporal pattern of theta behaved similarly for the two land uses, with both relative wetter soils during wet period and relative drier soils during dry period recognized in BNT. Soil moisture tended to be temporally stable among different dates, and more stable patterns could be observed for dates with more similar soil water conditions. The magnitude of the spatial variation of theta in KPT was greater than that in ENT. For both land uses, the standard deviation (SD) of theta in general increased as theta(m) increased, a behavior that could be well described with a natural logarithmic function. Convex relationship of CV and theta(m) and the maximum CV for both land uses (43.5% in KPT and 41.0% in BNT) can, therefore, be ascertained. Geostatistical analysis showed that the range in KPT (9.1 m) was shorter than that in BNT (15.1 m). The nugget effects, the structured variability, hence the total variability increased as theta(m) increased. For both land uses, the spatial dependency in general increased with increasing theta(m). 2011 Elsevier B.V. All rights reserved.
Resumo:
Expressed sequence tags derived markers have a great potential to be used in functional map construction and QTL tagging. In the present work, sugarcane genomic probes and expressed sequence tags having homology to genes, mostly involved in carbohydrate metabolism were used in RFLP assays to identify putative QTLs as well as their epistatic interactions for fiber content, cane yield, pol and tones of sugar per hectare, at two crop cycles in a progeny derived from a bi-parental cross of sugarcane elite materials. A hundred and twenty marker trait associations were found, of which 26 at both crop cycle and 32 only at first ratoon cane. A sucrose synthase derived marker was associated with a putative QTL having a high negative effect on cane yield and also with a QTL having a positive effect on Pol at both crop cycles. Fifty digenic epistatic marker interactions were identified for the four traits evaluated. Of these, only two were observed at both crop cycles.
Resumo:
This article presents the results obtained from an experimental device designed for the accurate determination of wood/water relationship on microsamples. The moisture content of the sample is measured with a highly sensitive electronic microbalance and two dimensions of the sample are collected continuously without contact using high-speed laser scan micrometers. The whole device is placed in a climatic chamber. The microsamples investigated were prepared with a diamond wire saw. The unique ability of this device to work with small samples allowed normal, opposite, and reaction wood to be characterized separately. Experiments were carried out on three wood species (beech, spruce, and poplar). In the case of beech, a deviation from the linear relation between tangential shrinkage and moisture content between 40 and 20% is particularly noticeable for the first desorption. A localized collapse of ray cells could explain this result. Compared to normal wood, an important longitudinal shrinkage and a low tangential shrinkage were observed in compression wood of spruce. Both the tension wood and opposite wood of poplar exhibit a high longitudinal shrinkage, but no significant difference between the three types of wood is noticeable in the tangential direction.
Resumo:
The objective of this research was to verify the effect of drying conditions on thermal properties and resistant starch content of green banana flour (Musa cavendishii). The green banana flour is a complex-carbohydrates source, mainly of resistant starch, and quantifying its gelatinization is important to understand how it affects food processing and the functional properties of the flour. The green banana flour was obtained by drying unripe peeled bananas (first stage of ripening) in a dryer tunnel at 52 degrees C, 55 degrees C and 58 degrees C and air velocity at 0.6 m s(-1), 1.0 m s(-1) and 1.4 m s(-1). The results obtained from differential scanning calorimetry, (DSC) curves show a single endothermic transition and a flow of maximum heating at peak temperatures from (67.95 +/- 0.31)degrees C to (68.63 +/- 0.28) degrees C. ANOVA shows that only drying temperature influenced significantly (P < 0.05) the gelatinization peak temperature (Tp). Gelatinization enthalpy (Delta H) varied from 9.04 J g(-1) to 11.63 J g(-1) and no significant difference was observed for either temperature or air velocity. The resistant starch content of the flour produced varied from (40.9 +/- 0.4) g/100 g to (58.5 +/- 5.4) g/100 g, on dry basis (d. b.), and was influenced by the combination of drying conditions: flour produced at 55 degrees C/1.4 m s(-1) and 55 degrees C/1.0 m s(-1) presented higher content of resistant starch. (c) 2009 Elsevier Ltd. All rights reserved
Resumo:
The present work aimed the study of phenolic acids composition in apple pomace of Gala and Fuji cultivars. Phenolic acids were fractionated in phenolic acids, esterified and insoluble and analyzed by gas chromatography-mass spectrometry (GC-MS). Sixteen phenolic acids were identified in apple pomace samples. Total phenolic acids in apple pomace from Gala and Fuji cultivars were, in dry weight, 93.94 mg/g and 68.38 mg/g, respectively. Content of free phenolic acids in apple pomace from Gala cultivar was 29.11 mg/g and the following acids were identified: salicylic, protocatequinic, quinic, p-coumaric, gallic, propylgallate and synapic. Content of free phenolic acids in apple pomace from Fuji cultivar was 16.03 mg/g and the following acids were identified: salicylic, protocatequinic, gallic, ferulic and sinapic. Salicylic was the predominant free phenolic acids found in both cultivars, consisting of 91.67% and 63.57% of the free phenolic acids in Gala and Fuji cultivars, respectively. Chlorogenic acid (1.147 mg/g) was found only in apple pomace from Fuji cultivar. Content of esterified phenolic acids in apple pomace from Gala and Fuji cultivars were 53.75 mg/g and 48.29 mg/g, respectively. It was verified that the predominant esterified phenolic acid in pomace from apple Gala is derived from salicylic acid (52.76 mg/g). Acids derived from gallic acid (0.175 mg/g), propylgallate acid (0.198 mg/g), ferulic acid (0.159 mg/g) and sinapic acid (0.140 mg/g) were also found in Gala cultivar. Regarding to pomace from cultivar Fuji, the main esterified phenolic acid found is also derived from salicylic acid (47.42 mg/g) followed by gallic acid (0.270 mg/g), benzoic acid (0.194 mg/g) and sinapic acid (0.115 mg/g). Content of insoluble phenolic acids in apple pomace from Gala and Fugi cultivars were, in dry weight, 11.08 mg/g and 4.05 mg/g, respectively Insoluble phenolic acids derived from salicylic acid were found in higher concentrations in apple pomace from both cultivars.
Resumo:
This work studied the radiation resistance of Listeria monocytogenes and Salmonella species and the effect of irradiation on leaf flavonoid content and sensory acceptability of minimally processed arugula. Immersion in ozone-treated water reduced the analyzed microorganisms by 1 log. L. monocytogenes and Salmonella were not isolated from samples. Samples of this vegetable were inoculated with a cocktail of Salmonella spp. and L. monocytogenes and exposed to gamma irradiation. D-10 values for Salmonella ranged from 0.16 to 0.19 kGy and for L. monocytogenes from 0.37 to 0.48 kGy. Kaempferol glycoside levels were 4 and ca. 3 times higher in samples exposed to 1 and 2 kGy, respectively, than in control samples. An increase in quercetin glycoside was also observed mainly in samples exposed to 1 kGy. In sensory evaluation, arugula had good acceptability, even after exposure to 2 and 4 kGy. These results indicate that irradiation has potential as a practical processing step to improve the safety of arugula.