800 resultados para alfalfa silage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of increased ammonia and/or arginine absorption on net splanchnic (portal-drained viscera [PDV] plus liver) metabolism of nonnitrogenous nutrients and hormones in cattle were examined. Six Hereford x Angus steers (501 +/- 1 kg BW) prepared with vascular catheters for measurements of net flux across the splanchnic bed were fed a 75% alfalfa:25% (as-fed basis) corn and soybean meal diet (0.523 MJ of ME/[kg BW(0.75.)d]) every 2 h without (27.0 g of N/kg of DM) and. with 20 g of urea/kg of DM (35.7 g of N/kg of DM) in a split-plot design. Net flux measurements were made immediately before and after a 72-h mesenteric vein infusion Of L-arginine (15 mmol/h). There were no treatment effects on PDV or hepatic 02 consumption. Dietary urea had no effect on splanchnic metabolism of glucose or L-lactate, but arginine infusion decreased net hepatic removal Of L-lactate when urea was fed (P < 0.01). Net PDV appearance of n-butyrate was increased by arginine infusion (P < 0.07), and both dietary urea (P < 0.09) and arginine infusion (P < 0.05) increased net hepatic removal of n-butyrate. Dietary urea also increased total splanchnic acetate output (P < 0.06), tended to increase arterial glucagon concentration (P < 0.11), and decreased arterial ST concentration (P < 0.03). Arginine infusion increased arterial concentration (P < 0.07) and net PDV release (P < 0.10) and tended to increase hepatic removal (P < 0.11) of insulin, as well as arterial concentration (P < 0.01) and total splanchnic output (P < 0.01) of glucagon. Despite changes in splanchnic N metabolism, increased ammonia and arginine absorption had little measurable effect on splanchnic metabolism of glucose and other nonnitrogenous components of splanchnic energy metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data from 60 multiparous Holstein cows were used in a 12-wk continuous design feeding trial. Cows were allocated to 1 of 4 experimental treatments (T1 to T4). In T1 and T2, the total mixed ration (TMR) contained either corn silage from the genetically modified (GM) variety Chardon Liberty Link, which is tolerant to the herbicide glufosinate ammonium, or its near isogenic nonGM counterpart, whereas the TMR used in T3 and T4 contained corn silage from the commercially available nonGM varieties Fabius and Antares, respectively. The objectives of the study were to determine if the inserted gene produced a marked effect on chemical composition, nutritive value, feed intake, and milk production, and to determine if transgenic DNA and the protein expressed by the inserted gene could be detected in bovine milk. The nutritive value, fermentation characteristics, mineral content, and amino acid composition of all 4 silages were similar. There were no significant treatment effects on milk yield, milk composition, and yield of milk constituents, and the dry matter (DM) intake of the GM variety was not significantly different from the 2 commercial varieties. However, although the DM intake noted for the nonGM near-isogenic variety was similar to the commercial varieties, it was significantly lower when compared with the GM variety. Polymerase chain reaction analyses of milk samples collected at wk 1, 6, and 12 of the study showed that none of the 90 milk samples tested positive, above a detection limit of 2.5 ng of total genomic DNA/mL of milk, for either tDNA (event T25) or the single-copy endogenous Zea mays gene, alcohol dehydrogenase. Using ELISA assays, the protein expressed by the T25 gene was not detected in milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present studies was to determine effects of basal dietary forage source on the response of milk fatty acid composition to an oil supplement based (2:1, respectively, w/w) on soybean oil and marine algae biomass oil high in cis-9, cis-12 C18:2n − 3 and C22:6n − 3, respectively. In Study 1, Hampshire × Dorset ewes (48) were randomly assigned to one of four treatments and 12 pens in a completely randomized design blocked on the basis of lambing date and number of lambs suckled. Control rations (60:40 forage:concentrate, dry matter (DM) basis) based on alfalfa pellets (AP) or corn silage (CS) were fed from lambing. Beginning at 22 days postpartum, three pens of ewes fed AP and three pens of ewes fed CS were supplemented with oil (30 g/kg of ration DM) in place of corn meal. Average ewe DM intake (DMI) and average daily gain (ADG) were measured weekly. Milk yield and composition were measured at 42 days postpartum. DMI was lower (P<0.02) for CS and for oil, but milk yield was not affected by forage source or oil supplementation. Milk fat content was higher for oil (P<0.10) and milk protein content was higher for AP (P<0.04). Total CLA concentration (g/100 g fatty acids) increased (P<0.01) with CS and oil, and the response to oil was greater for AP (P<0.04). Similarly, total trans-C18:1 and C22:6ω−3 concentrations were higher for CS and oil, but the response to oil was greater for CS (P<0.06 and P<0.01, respectively). In Study 2, the experiment was repeated using alfalfa haylage (AH) instead of AP. The DMI decreased (P<0.05) with oil feeding, but was not affected by forage source. Milk yield was decreased by feeding oil with AH, but not by feeding oil with CS (P<0.03). Milk fat content tended to be increased by feeding oil with AH, but tended to be decreased by feeding oil with CS (P<0.08). Total CLA concentration was increased (P<0.01) for AH versus CS and by oil, and the response to oil supplementation was greater for AH (P<0.01). In contrast, total trans-C18:1 concentration was higher for CS versus AH, with a greater response to oil for CS (P<0.05). Feeding marine oil increased the C22:6ω−3 (P<0.01) concentration, and the response was greater for AH (P<0.04). To further characterize the response of milk fat composition to dietary oil in ewes, a third study used six pens of three ewes each assigned to either the control CS diet used for Study 2 or the same diet supplemented with 45 g/kg (DM basis) of the oil mixture. Feeding oil had no effect on DMI, milk yield or milk fat concentration, but again increased (P<0.001) total trans-C18:1 and C22:6ω−3 concentrations and numerically increased (114%) total CLA concentration. Milk fatty acid composition responses to supplemental vegetable and marine oils were affected by forage source. Milk trans-C18:1 concentration was higher when CS was fed in Studies 1 and 2, but the effect of forage species on CLA concentration differed between studies, which may reflect differences in diet PUFA content and consumption, as well as amounts of dietary starch and fiber consumed. Despite large increases in trans-C18:1 concentration, milk fat content was not decreased by feeding unsaturated oils to ewes, even at diet levels of 45 g/kg of ration DM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Milk supply from Mexican dairy farms does not meet demand and small-scale farms can contribute toward closing the gap. Two multi-criteria programming techniques, goal programming and compromise programming, were used in a study of small-scale dairy farms in central Mexico. To build the goal and compromise programming models, 4 ordinary linear programming models were also developed, which had objective functions to maximize metabolizable energy for milk production, to maximize margin of income over feed costs, to maximize metabolizable protein for milk production, and to minimize purchased feedstuffs. Neither multicriteria approach was significantly better than the other; however, by applying both models it was possible to perform a more comprehensive analysis of these small-scale dairy systems. The multi-criteria programming models affirm findings from previous work and suggest that a forage strategy based on alfalfa, rye-grass, and corn silage would meet nutrient requirements of the herd. Both models suggested that there is an economic advantage in rescheduling the calving season to the second and third calendar quarters to better synchronize higher demand for nutrients with the period of high forage availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small-scale dairy systems play an important role in the Mexican dairy sector and farm planning activities related to resource allocation have a significant impact on the profitability of such enterprises. Linear programming is a technique widely used for planning and ration formulation, and partial budgeting is a technique for assessing the impact of changes on the profitability of an enterprise. This study used both methods to optimise land use for forage production and nutrient availability, and to evaluate the economic impact of such changes in small-scale Mexican dairy systems. The model showed satisfactory performance when optimal solutions were compared with the traditional strategy. The strategy using fresh ryegrass, maize silage and oat hay, and the strategy using a combination of alfalfa hay, maize silage, fresh ryegrass and oat hay appeared attractive options for providing a better nutrient supply and maintaining a higher stocking rate throughout the year than the traditional strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two trials were conducted to evaluate effects of feeding supplemental fibrolytic enzymes or soluble sugars and malic acid on milk production. In trial 1, 257 cows at four sites were fed a basal diet consisting of no more than 60% of forage DM as corn silage and less than 40% as alfalfa hay. Cows were assigned randomly within site, parity, and two stages of lactation to: 1) control; 2) enzyme A; 3) enzyme B; and 4) soluble sugars and malic acid. There was a 14-d pretreatment and an 84-d treatment period. Enzyme solutions were sprayed on either the forage component or the TMR each day while mixing feed. Trial 2 was similar, except 122 cows at one site in the United Kingdom were fed diets containing forage that was 75% corn silage and 25% grass silage, and all cows began the study between 25 to 31 DIM. Mean milk productions for 233 cows that completed trial 1 were 32.9, 32.5, 32.4, and 32.9 kg/d for control, enzyme A, enzyme B, and soluble sugars and malic acid, respectively. Mean milk productions for 116 cows that completed trial 2 were 28.2, 27.9, 28.8, and 28.4 kg/d, respectively. In vitro analyses of the activities of enzyme solutions indicated that all major cellulose and hemicellulose degrading activities were present; however, the pH optima (approximate pH = 4 to 5) were more acidic, and the temperature optimum (approximately 50 C) was greater than normal pH and temperature in the rumen. If fibrolytic activity in the rumen is a major mechanism of action of supplemental fibrolytic enzymes, it appears that considerable activity of these preparations was lost due to conditions in the rumen. In conclusion, feeding supplemental fibrolytic enzymes or malic acid with soluble sugars had no effect on milk production under the conditions used in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data from 60 multiparous Holstein cows were used in a 12-wk continuous design feeding trial. Cows were allocated to 1 of 4 experimental treatments (T1 to T4). In T1 and T2, the total mixed ration (TMR) contained either corn silage from the genetically modified (GM) variety Chardon Liberty Link, which is tolerant to the herbicide glufosinate ammonium, or its near isogenic nonGM counterpart, whereas the TMR used in T3 and T4 contained corn silage from the commercially available nonGM varieties Fabius and Antares, respectively. The objectives of the study were to determine if the inserted gene produced a marked effect on chemical composition, nutritive value, feed intake, and milk production, and to determine if transgenic DNA and the protein expressed by the inserted gene could be detected in bovine milk. The nutritive value, fermentation characteristics, mineral content, and amino acid composition of all 4 silages were similar. There were no significant treatment effects on milk yield, milk composition, and yield of milk constituents, and the dry matter (DM) intake of the GM variety was not significantly different from the 2 commercial varieties. However, although the DM intake noted for the nonGM near-isogenic variety was similar to the commercial varieties, it was significantly lower when compared with the GM variety. Polymerase chain reaction analyses of milk samples collected at wk 1, 6, and 12 of the study showed that none of the 90 milk samples tested positive, above a detection limit of 2.5 ng of total genomic DNA/mL of milk, for either tDNA (event T25) or the single-copy endogenous Zea mays gene, alcohol dehydrogenase. Using ELISA assays, the protein expressed by the T25 gene was not detected in milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sixteen early to mid lactation Finnish Ayrshire dairy cows were used in a cyclic change-over experiment with four 21-day experimental periods and a 4 5 2 factorial arrangement of treatments to evaluate the effects of heat-treated rapeseed expeller and solvent-extracted soya-bean meal protein supplements on animal performance. Dietary treatments consisted of grass silage offered ad libitum supplemented with a fixed amount of a cereal based concentrate (10 kg/day on a fresh weight basis) containing 120, 150, 180 or 210 g crude protein (CP) per kg dry matter (DM). Concentrate CP content was manipulated by replacement of basal ingredients (g/kg) with either rapeseed expeller (R; 120, 240 and 360) or soya-bean meal (S; 80, 160 and 240). Increases in concentrate CP stimulated linear increases (P < 0.05) in silage intake (mean 22.5 and 23.8 g DM per g/kg increase in dietary CP content, for R and S, respectively) and milk production. Concentrate inclusion of rapeseed expeller elicited higher (P < 0.01) milk yield and milk protein output responses (mean 108 and 3.71 g/day per g/kg DM increase in dietary CP content) than soya-bean meal (corresponding values 62 and 2.57). Improvements in the apparent utilization of dietary nitrogen for milk protein synthesis (mean 0.282 and 0.274, for R and S, respectively) were associated with higher (P < 0.05) plasma concentrations of histidine, branched-chain, essential and total amino acids (35, 482, 902 and 2240 and 26, 410, 800 and 2119 mu mol/l, respectively) and lower (P < 0.01) concentrations of urea (corresponding values 4.11 and 4.52 mmol/l). Heat-treated rapeseed expeller proved to be a more effective protein supplement than solvent-extracted soya-bean meal for cows offered grass silage-based diets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares the volatile compound and fatty acid compositions of grilled beef from Aberdeen Angus and Holstein-Friesian steers slaughtered at 14 months, each breed fed from 6 months on either cereal-based concentrates or grass silage. Linoleic acid levels were higher in the muscle of concentrates-fed animals, which in the cooked meat resulted in increased levels of several compounds formed from linoleic acid decomposition. Levels of alpha-linolenic acid, and hence some volatile compounds derived from this fatty acid, were higher in the meat from the silage-fed steers. 1-Octen-3-ol, hexanal, 2-pentylfuran, trimethylamine, cis- and trans-2-octene and 4,5-dimethyl-2-pentyl-3-oxazoline were over 3 times higher in the steaks from the concentrates-fed steers, while grass-derived 1-phytene was present at much higher levels in the beef from the silage-fed steers. Only slight effects of breed were observed. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the potential benefits to human health there is interest in increasing 18:3n-3, 20:5n-3, 22:6n-6, and cis-9,trans-11 conjugated linoleic acid (CLA) in ruminant foods. Four Aberdeen Angus steers (406 ± 8.2 kg BW) fitted with rumen and duodenal cannulae were used in a 4 x 4 Latin square experiment with 21 d periods to examine the potential of fish oil (FO) and linseed oil (LO) in the diet to increase ruminal outflow of trans-11 18:1 and total n-3 polyunsaturated fatty acids (PUFA) in growing cattle. Treatments consisted of a control diet (60:40; forage:concentrate ratio, on a DM basis, respectively) based on maize silage, or the same basal ration containing 30 g/kg DM of FO, LO or a mixture (1:1, w/w) of FO and LO (LFO). Diets were offered as total mixed rations and fed at a rate of 85 g DM/kg BW0.75/d. Oils had no effect (P = 0.52) on DM intake. Linseed oil had no effect (P > 0.05) on ruminal pH or VFA concentrations, while FO shifted rumen fermentation towards propionate at the expense of acetate. Compared with the control, LO increased (P < 0.05) 18:0, cis 18:1 (Δ9, 12-15), trans 18:1 (Δ4-9, 11-16), trans 18:2, geometric isomers of ∆9,11, ∆11,13, and ∆13,15 CLA, trans-8,cis-10 CLA, trans-10,trans-12 CLA, trans-12,trans-14 CLA, and 18:3n-3 flow at the duodenum. Inclusion of FO in the diet resulted in higher (P < 0.05) flows of cis-9 16:1, trans 16:1 (Δ6-13), cis 18:1 (Δ9, 11, and 13), trans 18:1 (Δ6-15), trans 18:2, 20:5n-3, 22:5n-3, and 22:6n-3, and lowered (P < 0.001) 18:0 at the duodenum relative to the control. For most fatty acids at the duodenum responses to LFO were intermediate of FO and LO. However, LFO resulted in higher (P = 0.04) flows of total trans 18:1 than LO and increased (P < 0.01) trans-6 16:1 and trans-12 18:1 at the duodenum compared with FO or LO. Biohydrogenation of cis-9 18:1 and 18:2n-6 in the rumen was independent of treatment, but both FO and LO increased (P < 0.001) the extent of 18:3n-3 biohydrogenation compared with the control. Ruminal 18:3n-3 biohydrogenation was higher (P < 0.001) for LO and LFO than FO, while biohydrogenation of 20:5n-3 and 22:6n-3 in the rumen was marginally lower (P = 0.05) for LFO than FO. In conclusion, LO and FO at 30 g/kg DM altered the biohydrogenation of unsaturated fatty acids in the rumen causing an increase in the flow of specific intermediates at the duodenum, but the potential of these oils fed alone or as a mixture to increase n-3 PUFA at the duodenum in cattle appears limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most Western countries, saturated fatty acid (SFA) intake exceeds recommended levels, which is considered a risk factor for cardiovascular disease (CVD). As milk and dairy products are major contributors to SFA intake in many countries, recent research has focused on sustainable methods of producing milk with a lower saturated fat concentration by altering dairy cow diets. Human intervention studies have shown that CVD risk can be reduced by consuming dairy products with reduced SFA and increased cis-monounsaturated fatty acid (MUFA) concentrations. This milk fatty acid profile can be achieved by supplementing dairy cow diets with cis-MUFA-rich unsaturated oils. However, rumen exposure of unsaturated oils also leads to enhanced milk trans fatty acid (TFA) concentrations. Because of concerns about the effects of TFA consumption on CVD, feeding strategies that increase MUFA concentrations in milk without concomitant increases in TFA concentration are preferred by milk processors. In an attempt to limit TFA production and increase the replacement of SFA by cis-MUFA, a preparation of rumen-protected unsaturated oils was developed using saponification with calcium salts. Four multiparous Holstein-Friesian cows in mid-late lactation were used in a 4 × 4 Latin square design with 21-d periods to investigate the effect of incremental dietary inclusion of a calcium salt of cis-MUFA product (Ca-MUFA; 20, 40, and 60 g/kg of dry matter of a maize silage-based diet), on milk production, composition, and fatty acid concentration. Increasing Ca-MUFA inclusion reduced dry matter intake linearly, but no change was observed in estimated ME intake. No change in milk yield was noted, but milk fat and protein concentrations were linearly reduced. Supplementation with Ca-MUFA resulted in a linear reduction in total SFA (from 71 to 52 g/100 g of fatty acids for control and 60 g/kg of dry matter diets, respectively). In addition, concentrations of both cis- and trans-MUFA were increased with Ca-MUFA inclusion, and increases in other biohydrogenation intermediates in milk fat were also observed. The Ca-MUFA supplement was very effective at reducing milk SFA concentration and increasing cis-MUFA concentrations without incurring any negative effects on milk and milk component yields. However, reduced milk fat and protein concentrations, together with increases in milk TFA concentrations, suggest partial dissociation of the calcium salts in the rumen

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The rhizosphere is the microbe-rich zone around plant roots and is a key determinant of the biosphere's productivity. Comparative transcriptomics was used to investigate general and plant-specific adaptations during rhizosphere colonization. Rhizobium leguminosarum biovar viciae was grown in the rhizospheres of pea (its legume nodulation host), alfalfa (a non-host legume) and sugar beet (non-legume). Gene expression data were compared to metabolic and transportome maps to understand adaptation to the rhizosphere. Results Carbon metabolism was dominated by organic acids, with a strong bias towards aromatic amino acids, C1 and C2 compounds. This was confirmed by induction of the glyoxylate cycle required for C2 metabolism and gluconeogenesis in all rhizospheres. Gluconeogenesis is repressed in R. leguminosarum by sugars, suggesting that although numerous sugar and putative complex carbohydrate transport systems are induced in the rhizosphere, they are less important carbon sources than organic acids. A common core of rhizosphere-induced genes was identified, of which 66% are of unknown function. Many genes were induced in the rhizosphere of the legumes, but not sugar beet, and several were plant specific. The plasmid pRL8 can be considered pea rhizosphere specific, enabling adaptation of R. leguminosarum to its host. Mutation of many of the up-regulated genes reduced competitiveness for pea rhizosphere colonization, while two genes specifically up-regulated in the pea rhizosphere reduced colonization of the pea but not alfalfa rhizosphere. Conclusions Comparative transcriptome analysis has enabled differentiation between factors conserved across plants for rhizosphere colonization as well as identification of exquisite specific adaptation to host plants.