993 resultados para air - sea exchanges
Resumo:
In the begining of April 2004, concentrations of NHx (NH3 + NH4+) were measured in surface waters of the Guanabara Bay. Concentrations varied from 2 to 143 mmol L-1. Ammonia exchange at the air-sea interface was quantified using a numerical model. No measurement of NH3 concentration in air (c air) was performed. Thus, calculations of NH3 flux were based on the assumptions of c air = 1 and 5 µg m-3. Fluxes were predominantly from the water to the atmosphere and varied from -20 to almost 3500 µg N m-2 h-1.
Resumo:
In Surface water concentrations of N2O were measured at 37 stations in Guanabara Bay and fluxes estimated across the air-sea interface. Concentrations averaged 8.2 ± 2.2 nmol L-1 and 90% of the stations showed supersaturation averaging 33%. N2O fluxes were estimated using a two-film model which is given by the product of the concentration difference across the film and the gas transfer coefficient (k w). Two parametrizations of k w were used which provided average fluxes of 0.3 and 3.0 µg N m-2 h-1. Flux measurements using floating chambers (not reported here) seem to agree with the upper limit of these estimates.
Resumo:
Integrations of a fully-coupled climate model with and without flux adjustments in the equatorial oceans are performed under 2×CO2 conditions to explore in more detail the impact of increased greenhouse gas forcing on the monsoon-ENSO system. When flux adjustments are used to correct some systematic model biases, ENSO behaviour in the modelled future climate features distinct irregular and periodic (biennial) regimes. Comparison with the observed record yields some consistency with ENSO modes primarily based on air-sea interaction and those dependent on basinwide ocean wave dynamics. Simple theory is also used to draw analogies between the regimes and irregular (stochastically forced) and self-excited oscillations respectively. Periodic behaviour is also found in the Asian-Australian monsoon system, part of an overall biennial tendency of the model under these conditions related to strong monsoon forcing and increased coupling between the Indian and Pacific Oceans. The tropospheric biennial oscillation (TBO) thus serves as a useful descriptor for the coupled monsoon-ENSO system in this case. The presence of obvious regime changes in the monsoon-ENSO system on interdecadal timescales, when using flux adjustments, suggests there may be greater uncertainty in projections of future climate, although further modelling studies are required to confirm the realism and cause of such changes.
Resumo:
The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal time scales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Niño—Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. A more comprehensive assessment is needed of the impact of black carbon aerosols, which may modulate that of other anthropogenic greenhouse gases. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features including, but not limited to, the Mei-Yu/Baiu sudden onset and withdrawal, low-level jet orientation and variability, and orographic forced rainfall. Under anthropogenic climate change many competing factors complicate making robust projections of monsoon changes. Absent aerosol effects, increased land-sea temperature contrast suggests strengthened monsoon circulation due to climate change. However, increased aerosol emissions will reflect more solar radiation back to space, which may temper or even reduce the strength of monsoon circulations compared to the present day. Precipitation may behave independently from the circulation under warming conditions in which an increased atmospheric moisture loading, based purely on thermodynamic considerations, could result in increased monsoon rainfall under climate change. The challenge to improve model parameterizations and include more complex processes and feedbacks pushes computing resources to their limit, thus requiring continuous upgrades of computational infrastructure to ensure progress in understanding and predicting current and future behaviour of monsoons.
Resumo:
A study of the formation and propagation of volume anomalies in North Atlantic Mode Waters is presented, based on 100 yr of monthly mean fields taken from the control run of the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3). Analysis of the temporal and. spatial variability in the thickness between pairs of isothermal surfaces bounding the central temperature of the three main North Atlantic subtropical mode waters shows that large-scale variability in formation occurs over time scales ranging from 5 to 20 yr. The largest formation anomalies are associated with a southward shift in the mixed layer isothermal distribution, possibly due to changes in the gyre dynamics and/or changes in the overlying wind field and air-sea heat fluxes. The persistence of these anomalies is shown to result from their subduction beneath the winter mixed layer base where they recirculate around the subtropical gyre in the background geostrophic flow. Anomalies in the warmest mode (18 degrees C) formed on the western side of the basin persist for up to 5 yr. They are removed by mixing transformation to warmer classes and are returned to the seasonal mixed layer near the Gulf Stream where the stored heat may be released to the atmosphere. Anomalies in the cooler modes (16 degrees and 14 degrees C) formed on the eastern side of the basin persist for up to 10 yr. There is no clear evidence of significant transformation of these cooler mode anomalies to adjacent classes. It has been proposed that the eastern anomalies are removed through a tropical-subtropical water mass exchange mechanism beneath the trade wind belt (south of 20 degrees N). The analysis shows that anomalous mode water formation plays a key role in the long-term storage of heat in the model, and that the release of heat associated with these anomalies suggests a predictable climate feedback mechanism.
Resumo:
Changes in ocean circulation associated with internal climate variability have a major influence on upper ocean temperatures, particularly in regions such as the North Atlantic, which are relatively well-observed and therefore over-represented in the observational record. As a result, global estimates of upper ocean heat content can give misleading estimates of the roles of natural and anthropogenic factors in causing oceanic warming. We present a method to quantify ocean warming that filters out the natural internal variability from both observations and climate simulations and better isolates externally forced air-sea heat flux changes. We obtain a much clearer picture of the drivers of oceanic temperature changes, being able to detect the effects of both anthropogenic and volcanic influences simultaneously in the observed record. Our results show that climate models are capable of capturing in remarkable detail the externally forced component of ocean temperature evolution over the last five decades.
Resumo:
Measurements of anthropogenic tracers such as chlorofluorocarbons and tritium must be quantitatively combined with ocean general circulation models as a component of systematic model development. The authors have developed and tested an inverse method, using a Green's function, to constrain general circulation models with transient tracer data. Using this method chlorofluorocarbon-11 and -12 (CFC-11 and -12) observations are combined with a North Atlantic configuration of the Miami Isopycnic Coordinate Ocean Model with 4/3 degrees resolution. Systematic differences can be seen between the observed CFC concentrations and prior CFC fields simulated by the model. These differences are reduced by the inversion, which determines the optimal gas transfer across the air-sea interface, accounting for uncertainties in the tracer observations. After including the effects of unresolved variability in the CFC fields, the model is found to be inconsistent with the observations because the model/data misfit slightly exceeds the error estimates. By excluding observations in waters ventilated north of the Greenland-Scotland ridge (sigma (0) < 27.82 kg m(-3); shallower than about 2000 m), the fit is improved, indicating that the Nordic overflows are poorly represented in the model. Some systematic differences in the model/data residuals remain and are related, in part, to excessively deep model ventilation near Rockall and deficient ventilation in the main thermocline of the eastern subtropical gyre. Nevertheless, there do not appear to be gross errors in the basin-scale model circulation. Analysis of the CFC inventory using the constrained model suggests that the North Atlantic Ocean shallower than about 2000 m was near 20% saturated in the mid-1990s. Overall, this basin is a sink to 22% of the total atmosphere-to-ocean CFC-11 flux-twice the global average value. The average water mass formation rates over the CFC transient are 7.0 and 6.0 Sv (Sv = 10(6) m(3) s(-1)) for subtropical mode water and subpolar mode water, respectively.
Resumo:
Assimilation of physical variables into coupled physical/biogeochemical models poses considerable difficulties. One problem is that data assimilation can break relationships between physical and biological variables. As a consequence, biological tracers, especially nutrients, are incorrectly displaced in the vertical, resulting in unrealistic biogeochemical fields. To prevent this, we present the idea of applying an increment to the nutrient field within a data assimilating model to ensure that nutrient-potential density relationships are maintained within a water column during assimilation. After correcting the nutrients, it is assumed that other biological variables rapidly adjust to the corrected nutrient fields. We applied this method to a 17 year run of the 2° NEMO ocean-ice model coupled to the PlankTOM5 ecosystem model. Results were compared with a control with no assimilation, and with a model with physical assimilation but no nutrient increment. In the nutrient incrementing experiment, phosphate distributions were improved both at high latitudes and at the equator. At midlatitudes, assimilation generated unrealistic advective upwelling of nutrients within the boundary currents, which spread into the subtropical gyres resulting in more biased nutrient fields. This result was largely unaffected by the nutrient increment and is probably due to boundary currents being poorly resolved in a 2° model. Changes to nutrient distributions fed through into other biological parameters altering primary production, air-sea CO2 flux, and chlorophyll distributions. These secondary changes were most pronounced in the subtropical gyres and at the equator, which are more nutrient limited than high latitudes.
Resumo:
Wind generated waves at the sea surface are of outstanding importance for both their practical relevance in many aspects, such as coastal erosion, protection, or safety of navigation, and for their scientific relevance in modifying fluxes at the air-sea interface. So far long-term changes in ocean wave climate have been studied mostly from a regional perspective with global dynamical studies emerging only recently. Here a global wave climate study is presented, in which a global wave model (WAM) is driven by atmospheric forcing from a global climate model (ECHAM5) for present day and potential future climate conditions represented by the IPCC (Intergovernmental Panel for Climate Change) A1B emission scenario. It is found that changes in mean and extreme wave climate towards the end of the twenty-first century are small to moderate, with the largest signals being a poleward shift in the annual mean and extreme significant wave heights in the mid-latitudes of both hemispheres, more pronounced in the Southern Hemisphere, and most likely associated with a corresponding shift in mid-latitude storm tracks. These changes are broadly consistent with results from the few studies available so far. The projected changes in the mean wave periods, associated with the changes in the wave climate in the mid to high latitudes, are also shown, revealing a moderate increase in the equatorial eastern side of the ocean basins. This study presents a step forward towards a larger ensemble of global wave climate projections required to better assess robustness and uncertainty of potential future wave climate change.
Resumo:
[1] An eddy-permitting ¼° global ocean reanalysis based on the Operational Met Office FOAM data assimilation system has been run for 1989–2010 forced by ERA-Interim meteorology. Freshwater and heat transports are compared with published estimates globally and in each basin, with special focus on the Atlantic. The meridional transports agree with observations within errors at most locations, but where eddies are active the transports by the mean flow are nearly always in better agreement than the total transports. Eddy transports are down gradient and are enhanced relative to a free run. They may oppose or reinforce mean transports and provide 40–50% of the total transport near midlatitude fronts, where eddies with time scales <1 month provide up to 15%. Basin-scale freshwater convergences are calculated with the Arctic/Atlantic, Indian, and Pacific oceans north of 32°S, all implying net evaporation of 0.33 ± 0.04 Sv, 0.65 ± 0.07 Sv, and 0.09 ± 0.04 Sv, respectively, within the uncertainty of observations in the Atlantic and Pacific. The Indian is more evaporative and the Southern Ocean has more precipitation (1.07 Sv). Air-sea fluxes are modified by assimilation influencing turbulent heat fluxes and evaporation. Generally, surface and assimilation fluxes together match the meridional transports, indicating that the reanalysis is close to a steady state. Atlantic overturning and gyre transports are assessed with overturning freshwater transports southward at all latitudes. At 26°N eddy transports are negligible, overturning transport is 0.67 ± 0.19 Sv southward and gyre transport is 0.44 ± 0.17 Sv northward, with divergence between 26°N and the Bering Strait of 0.13 ± 0.23 Sv over 2004–2010.
Resumo:
This study investigates the impact of a full interactive ocean on daily initialised 15 day hindcasts of the Madden-Julian oscillation (MJO), measured against a Met Office Unified Model (MetUM) atmosphere control simulation (AGCM) during a 3 month period of the Year of Tropical Convection (YOTC). Results indicated that the coupled configuration (CGCM) extends MJO predictability over that of the AGCM, by up to 3-5 days. Propagation is improved in the CGCM, which we partly attribute to a more realistic phase relationship between sea surface temperature (SST) and convection. In addition, the CGCM demonstrates skill in representing downwelling oceanic Kelvin and Rossby waves which warm SSTs along their trajectory, with the potential to feed back on the atmosphere. These results imply that an ocean model capable of simulating internal ocean waves may be required to capture the full effect of air-sea coupling for the MJO.
Resumo:
This study investigated the relationship between the asymmetry in the duration of El Ni?o and La Ni?a and the length of their decaying phases. The results suggested that the duration asymmetry comes from the long decaying ENSO cases rather than the short decaying ones. The evolutions of short decaying El Ni?o and La Ni?a are approximately a mirror image with a rapid decline in the following summer for the warm and cold events. However, a robust asymmetry was found in long decaying cases, with a prolonged and re-intensified La Ni?a in the following winter. The asymmetry for long decaying cases starts from the westward extension of the zonal wind anomalies in a mature winter, and is further contributed to by the air-sea interaction over the tropical Pacific in the following seasons.
Resumo:
Aimed at reducing deficiencies in representing the Madden-Julian oscillation (MJO) in general circulation models (GCMs), a global model evaluation project on vertical structure and physical processes of the MJO was coordinated. In this paper, results from the climate simulation component of this project are reported. It is shown that the MJO remains a great challenge in these latest generation GCMs. The systematic eastward propagation of the MJO is only well simulated in about one-fourth of the total participating models. The observed vertical westward tilt with altitude of the MJO is well simulated in good MJO models, but not in the poor ones. Damped Kelvin wave responses to the east of convection in the lower troposphere could be responsible for the missing MJO preconditioning process in these poor MJO models. Several process-oriented diagnostics were conducted to discriminate key processes for realistic MJO simulations. While large-scale rainfall partition and low-level mean zonal winds over the Indo-Pacific in a model are not found to be closely associated with its MJO skill, two metrics, including the low-level relative humidity difference between high and low rain events and seasonal mean gross moist stability, exhibit statistically significant correlations with the MJO performance. It is further indicated that increased cloud-radiative feedback tends to be associated with reduced amplitude of intraseasonal variability, which is incompatible with the radiative instability theory previously proposed for the MJO. Results in this study confirm that inclusion of air-sea interaction can lead to significant improvement in simulating the MJO.
Resumo:
This work explores in detail synoptic and mesoscale features of Hurricane Catarina during its life cycle from a decaying baroclinic wave to a tropical depression that underwent tropical transition (TT) and finally to a Category 2 hurricane at landfall over Santa Catarina State coast, southern Brazil. This unique system caused 11 deaths mostly off the Brazilian coast and an estimated half billion dollars in damage in a matter of a few hours on 28 March 2004. Although the closest meteorological station available was tens of kilometres away from the eye, in situ meteorological measurements provided by a work-team sent to the area where the eye made landfall unequivocally reproduces the tropical signature with category 2 strength, adding to previous analysis where this data was not available. Further analyses are based mostly on remote sensing data available at the time of the event. A classic dipole blocking set synoptic conditions for Hurricane Catarina to develop, dynamically contributing to the low wind shear observed. On the other hand, on its westward transit, large scale subsidence limited its strength and vertical development. Catarina had relatively cool SST conditions, but this was mitigated by favourable air-sea fluxes leading to latent heat release-driven processes during the mature phase. The ocean`s dynamic topography also suggested the presence of nearby warm core rings which may have facilitated the transition and post-transition intensification. Since there were no records of such a system at least in the past 30 years and given that SSTs were generally below 26 degrees C and vertical shear was usually strong, despite all satellite data available, the system was initially classified as an extratropical cyclone. Here we hypothesise that this categorization was based oil inadequate regional scale model outputs which did not account for the importance of the latent heat fluxes over the ocean. Hurricane Catarina represents a dramatic event on weather systems in South America. It has attracted attention worldwide and poses questions as whether or not it is a symptom of global warming. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study analyzes and discusses data taken from oceanic and atmospheric measurements performed simultaneously at the Brazil-Malvinas Confluence (BMC) region in the southwestern Atlantic Ocean. This area is one of the most dynamical frontal regions of the world ocean. Data were collected during four research cruises in the region once a year in consecutive years between 2004 and 2007. Very few studies have addressed the importance of studying the air-sea coupling at the BMC region. Lateral temperature gradients at the study region were as high as 0.3 degrees C km(-1) at the surface and subsurface. In the oceanic boundary layer, the vertical temperature gradient reached 0.08 degrees C m(-1) at 500 m depth. Our results show that the marine atmospheric boundary layer (MABL) at the BMC region is modulated by the strong sea surface temperature (SST) gradients present at the sea surface. The mean MABL structure is thicker over the warmside of the BMC where Brazil Current (BC) waters predominate. The opposite occurs over the coldside of the confluence where waters from the Malvinas (Falkland) Current (MC) are found. The warmside of the confluence presented systematically higher MABL top height compared to the coldside. This type of modulation at the synoptic scale is consistent to what happens in other frontal regions of the world ocean, where the MABL adjusts itself to modifications along the SST gradients. Over warm waters at the BMC region, the MABL static instability and turbulence were increased while winds at the lower portion of the MABL were strong. Over the coldside of the BC/MC front an opposite behavior is found: the MABL is thinner and more stable. Our results suggest that the sea-level pressure (SLP) was also modulated locally, together with static stability vertical mixing mechanism, by the surface condition during all cruises. SST gradients at the BMC region modulate the synoptic atmospheric pressure gradient. Postfrontal and prefrontal conditions produce opposite thermal advections in the MABL that lead to different pressure intensification patterns across the confluence.