911 resultados para aggregated multicast
Resumo:
This data set contains measurements of inorganic phosphorus in samples of soil solution collected in 2003 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below) that have been aggregated to seasonal values. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved inorganic P (PO4P). Here volume-weighted mean values are provided as aggregated seasonal values (spring = March to May, summer = June to August, fall = September to November, winter = December to February) for 2003 in spring, fall, and winter. To calculate these values, the sampled volume of soil solution is used as weight for P concentrations of the respective sampling date. Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (CFA SAN++, Skalar [Breda, The Netherlands]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.02 mg P l-1 (CFA, Skalar).
Resumo:
This data set contains measurements of inorganic phosphorus in samples of soil solution collected in 2005 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below) that have been aggregated to seasonal values. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved inorganic P (PO4P). Here volume-weighted mean values are provided as aggregated seasonal values (spring = March to May, summer = June to August, fall = September to November, winter = December to February) for 2005 in spring, and winter. To calculate these values, the sampled volume of soil solution is used as weight for P concentrations of the respective sampling date. Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (CFA Autoanalyzer [Bran&Luebbe, Norderstedt, Germany]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.04 mg P l-1 (Autoanalyzer, Bran&Luebbe).
Resumo:
IP multicast allows the efficient support of group communication services by reducing the number of IP flows needed for such communication. The increasing generalization in the use of multicast has also triggered the need for supporting IP multicast in mobile environments. Proxy Mobile IPv6 (PMIPv6) is a network-based mobility management solution, where the functionality to support the terminal movement resides in the network. Recently, a baseline solution has been adopted for multicast support in PMIPv6. Such base solution has inefficiencies in multicast routing because it may require multiple copies of a single stream to be received by the same access gateway. Nevertheless, there is an alternative solution to support multicast in PMIPv6 that avoids this issue. This paper evaluates by simulation the scalability of both solutions under realistic conditions, and provides an analysis of the sensitivity of the two proposals against a number of parameters.
Resumo:
En la última década, la telefonía móvil ha evolucionado a una extraordinaria velocidad, permitiéndonos acceder a funcionalidades características de los PC pero con la ventaja de poseer una movilidad total. Con la aparición de la tecnología Long Term Evolution (LTE), comúnmente conocida como 4G, se ha conseguido desarrollar un sistema que se ha mejorado notablemente las prestaciones proporcionando alta velocidad y eficiencia a los ya masivamente utilizados smartphones. Gracias a este exponencial incremento del ancho de banda disponible, los usuarios hoy en día no se conforman sólo con navegar por páginas Web, sino que cada vez muestran un mayor interés en poder explotar al máximo los recursos multimedia, dando lugar a servicios como el streaming de vídeo. De este modo, a raíz del proyecto LTExtreme centrado en el análisis y la propuesta de optimización para servicios de streaming multimedia multicast/unicast sobre la tecnología LTE, surge este trabajo en el cual se pretende extender dicho análisis a la multidifusión de vídeo en directo. El proyecto se basa en la implementación de la arquitectura propuesta por el organismo 3GPP para dar este servicio, considerándose como una solución eficiente en la que se combina el protocolo de transporte multicast FLUTE (File Delivery over Unidirectional Transport) con la tecnología DASH (Dynamic Adaptative Streaming over HTTP). La arquitectura se ha implementado mediante la creación y configuración de una maqueta de laboratorio gracias a la herramienta de virtualización Virtual Networks over linuX (VNX). Un escenario simplificado de la red móvil LTE junto con el servidor de contenidos y varios clientes móviles, pudiendo realizar simulaciones de una emisión de vídeo en directo, y a su vez analizar los resultados obtenidos, así como la calidad de servicio percibida. Concretamente, se realizará un análisis de los problemas asociados a los casos de uso tratados, tanto de la emisión de un único vídeo como una de duración infinita, asemejándose a lo que supondría la emisión de la programación televisiva para un determinado canal. Por último, se plantearán ideas surgidas a raíz de los resultados obtenidos de dichos estudios y que puedan tener futuro y ser aplicables al mundo real.
Resumo:
Nanometer-scale diamonds formed using a detonation process are an interesting class of diamond materials. Commercially supplied material is highly aggregated with ~ 5 nm diamond crystals forming particles with micron sizes. Previous models have suggested that nondiamond carbon is incorporated between the crystals, which would reduce the electrical and chemical usefulness of this form of diamond. However, using impedance spectroscopy we have shown that at temperatures below 350?°C the form of detonation nanodiamond being studied is a near to ideal dielectric, implying a full sp3 form. At temperatures above this the surfaces of the diamond crystals may support some nondiamond carbon
Resumo:
This paper attempts to address the effectiveness of physical-layer network coding (PNC) on the throughput improvement for multi-hop multicast in random wireless ad hoc networks (WAHNs). We prove that the per session throughput order with PNC is tightly bounded as T((nvmR (n))-1) if m = O(R-2 (n)), where n is the total number of nodes, R(n) is the communication range, and m is the number of destinations for each multicast session. We also show that per-session throughput order with PNC is tight bounded as T(n-1), when m = O(R-2(n)). The results of this paper imply that PNC cannot improve the throughput order of multicast in random WAHNs, which is different from the intuition that PNC may improve the throughput order as it allows simultaneous signal access and combination.
Resumo:
This paper attempts to address the effectiveness of physical-layer network coding (PNC) on the capacity improvement for multi-hop multicast in random wireless ad hoc networks (WAHNs). While it can be shown that there is a capacity gain by PNC, we can prove that the per session throughput capacity with PNC is ? (nR(n))), where n is the total number of nodes, R(n) is the communication range, and each multicast session consists of a constant number of sinks. The result implies that PNC cannot improve the capacity order of multicast in random WAHNs, which is different from the intuition that PNC may improve the capacity order as it allows simultaneous signal reception and combination. Copyright © 2010 ACM.
Resumo:
In this paper, we propose a resource allocation scheme to minimize transmit power for multicast orthogonal frequency division multiple access systems. The proposed scheme allows users to have different symbol error rate (SER) across subcarriers and guarantees an average bit error rate and transmission rate for all users. We first provide an algorithm to determine the optimal bits and target SER on subcarriers. Because the worst-case complexity of the optimal algorithm is exponential, we further propose a suboptimal algorithm that separately assigns bit and adjusts SER with a lower complexity. Numerical results show that the proposed algorithm can effectively improve the performance of multicast orthogonal frequency division multiple access systems and that the performance of the suboptimal algorithm is close to that of the optimal one. Copyright © 2012 John Wiley & Sons, Ltd. This paper proposes optimal and suboptimal algorithms for minimizing transmitting power of multicast orthogonal frequency division multiple access systems with guaranteed average bit error rate and data rate requirement. The proposed scheme allows users to have different symbol error rate across subcarriers and guarantees an average bit error rate and transmission rate for all users. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Multicast is an efficient approach to save network bandwidth for multimedia streaming services. To provide Quality of Services (QoS) for the multimedia services while maintain the advantage of multicast in bandwidth efficiency, admission control for multicast sessions are expected. Probe-based multicast admission control (PBMAC) schemes are of a sort of scalable and simple admission control for multicast. Probing scheme is the essence of PBMAC. In this paper, after a detailed survey on three existing probing schemes, we evaluate these schemes using simulation and analysis approaches in two aspects: admission correctness and group scalability. Admission correctness of the schemes is compared by simulation investigation. Analytical models for group scalability are derived, and validated by simulation results. The evaluation results illustrate the advantages and weaknesses of each scheme, which are helpful for people to choose proper probing scheme for network.