896 resultados para aerobic oxidation
Resumo:
Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99 % of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.
Resumo:
THE PURPOSE OF THIS STUDY WAS TO PROPOSE A SPECIFIC LACTATE MINIMUM TEST FOR ELITE BASKETBALL PLAYERS CONSIDERING THE: Running Anaerobic Sprint Test (RAST) as a hyperlactatemia inductor, short distances (specific distance, 20 m) during progressive intensity and mathematical analysis to interpret aerobic and anaerobic variables. The basketball players were assigned to four groups: All positions (n=26), Guard (n= 7), Forward (n=11) and Center (n=8). The hyperlactatemia elevation (RAST) method consisted of 6 maximum sprints over 35 m separated by 10 s of recovery. The progressive phase of the lactate minimum test consisted of 5 stages controlled by an electronic metronome (8.0, 9.0, 10.0, 11.0 and 12.0 km/h) over a 20 m distance. The RAST variables and the lactate values were analyzed using visual and mathematical models. The intensity of the lactate minimum test, determined by a visual method, reduced in relation to polynomial fits (2nd degree) for the Small Forward positions and General groups. The Power and Fatigue Index values, determined by both methods, visual and 3rd degree polynomial, were not significantly different between the groups. In conclusion, the RAST is an excellent hyperlactatemia inductor and the progressive intensity of lactate minimum test using short distances (20 m) can be specifically used to evaluate the aerobic capacity of basketball players. In addition, no differences were observed between the visual and polynomial methods for RAST variables, but lactate minimum intensity was influenced by the method of analysis.
Resumo:
The main aim of this investigation was to verify the relationship of the variables measured during a 3-minute all-out test with aerobic (i.e., peak oxygen uptake [(Equation is included in full-text article.)] and intensity corresponding to the lactate minimum [LMI]) and anaerobic parameters (i.e., anaerobic work) measured during a 400-m maximal performance. To measure force continually and to avoid the possible influences caused by turns, the 3-minute all-out effort was performed in tethered swimming. Thirty swimmers performed the following tests: (a) a 3-minute all-out tethered swimming test to determine the final force (equivalent to critical force: CF3-MIN) and the work performed above CF3-MIN (W'3-MIN), (b) a LMI protocol to determine the LMI during front crawl swimming, and (c) a 400-m maximal test to determine the (Equation is included in full-text article.)and total anaerobic contribution (WANA). Correlations between the variables were tested using the Pearson's correlation test (p ≤ 0.05). CF3-MIN (73.9 ± 13.2 N) presented a high correlation with the LMI (1.33 ± 0.08 m·s; p = 0.01) and (Equation is included in full-text article.)(4.5 ± 1.2 L·min; p = 0.01). However, the W'3-MIN (1,943.2 ± 719.2 N·s) was only moderately correlated with LMI (p = 0.02) and (Equation is included in full-text article.)(p = 0.01). In summary, CF3-MIN determined during the 3-minute all-out effort is associated with oxidative metabolism and can be used to estimate the aerobic capacity of swimmers. In contrast, the anaerobic component of this model (W'3-MIN) is not correlated with WANA.
Resumo:
184
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Filleting yield of Nile tilapia Oreochromis niloticus (L.) is low (30%) and generates large amount of wastes that may turn into environmental and economic problem. However, these wastes can be used for the extraction of minced fish (MF) which can be used in the preparation of sausages. The objective of this study was to assess the quality of sausages prepared with 0, 20, 40, 60, 80 and 100% of MF from Nile tilapia filleting waste during storage at 0±0.3ºC. Alterations in the instrumental color (L*, a* and b*), lipid oxidation (TBARS), total volatile nitrogenous bases (TVB-N), pH, microbiological condition (pathogenic bacteria and aerobic psychrotrophic bacteria), and sensory attributes (color, odor, flavor, texture and overall acceptability) were evaluated for up to 40 days. The addition of MF to sausages increased TBARS values and decreases TVB-N, L*, a* and b* values. Acceptability of color attribute decreased with increasing MF; best flavor, texture and overall acceptability scores were registered for sausages containing 40 and 60% MF; best odor was registered for 100% MF. Pathogenic microorganisms were not detected, but decrease in pH and proliferation of aerobic psychrotrophic bacteria which, however, did not compromise sensory evaluation of sausages were registered throughout storage. Sausages prepared with MF from tilapia filleting waste have a shelf-life of 40 days when stored at 0±0.3ºC, and the maximum recommended MF inclusion to maintain good sensory quality is 60%.
Resumo:
Physiological and biochemical aspects of assai palm during seed germination and early seedling growth were investigated. Seeds collected from plants growing in flooded and upland forests were used to determine the influence of normoxic (aerobic) and anoxic (anaerobic) conditions in germination and the initial and average time of development in the roots and shoots. After 75 days, seedlings germinated under normoxia were transferred to trays and submitted to flooding. Seed reserves (lipids, proteins, soluble sugars and starch) were monitored for quiescent and germinated seeds maintained under normoxic and anoxic conditions, as well as after 5, 10 and 20 days of seedling growth. Alcohol dehydrogenase (ADH) activity was quantified in roots and leaves of seedlings without or with flooding (partial and total). Seeds were not able to germinate under anoxia. Different strategies of storage mobilization of lipids, proteins, soluble sugars and starch were observed in seeds of each environment. ADH activity was induced by anoxia, with the highest level observed in the leaves. This study showed that, under normoxic conditions, the best developmental performance of assai palm seeds, from flooded or upland forest areas, during germination was associated with primary metabolites mobilization and seedling flooding tolerance with increased ADH activity. We conclude that the assai palm is well adapted to the anoxic conditions provoked by flooding.
Resumo:
O ácido graxo (AG) é uma importante fonte de energia para o músculo esquelético. Durante o exercício sua mobilização é aumentada para suprir as necessidades da musculatura ativa. Acredita-se que diversos pontos de regulação atuem no controle da oxidação dos AG, sendo o principal a atividade do complexo carnitina palmitoil transferase (CPT), entre os quais três componentes estão envolvidos: a CPT I, a CPT II e carnitina acilcarnitina translocase. A função da CPT I durante o exercício físico é controlar a entrada de AG para o interior da mitocôndria, para posterior oxidação do AG e produção de energia. Em resposta ao treinamento físico há um aumento na atividade e expressão da CPT I no músculo esquelético. Devido sua grande importância no metabolismo de lipídios, os mecanismos que controlam sua atividade e sua expressão gênica são revisados no presente estudo. Reguladores da expressão gênica de proteínas envolvidas no metabolismo de lipídios no músculo esquelético, os receptores ativados por proliferadores de peroxissomas (PPAR) alfa e beta, são discutidos com um enfoque na resposta ao treinamento físico.
Resumo:
In order to verify the influence of chronic and acute ambient oxygen levels from egg to adult stage of the zebrafish, in vivo oxygen consumption (MO2), critical tensions of oxygen (Pcrit), heart rate (fH) and total body lactate concentration (Lc) were determined for Danio rerio (Hamilton, 1822) raised at 28 °C under normoxic (7.5 mgO2.L-1 or 80 mm.Hg-1) and hypoxic conditions (4.3 mgO2.L-1) and exposed to acute hypoxia during different developmental stages. Our findings confirmed that very early stages do not respond effectively to ambient acute hypoxia. However, after the stage corresponding to the age of 30 days, D. rerio was able to respond to acute hypoxia through effective physiological mechanisms involving aerobic and anaerobic metabolism. Such responses were more efficient for the fishes reared under hypoxia which showed that D. rerio survival capability increased during acclimation to mild hypoxia. Measurements of body mass and length showed that moderate hypoxia did not affect growth significantly until the fish reached the stage of 60 days. Moreover, a growth delay was verified for the hypoxic-reared animals. Also, the D. rerio eggs-to-larvae survival varied from 87.7 to 62.4% in animals reared under normoxia and mild hypoxia, respectively. However, the surviving animals raised under moderated hypoxia showed a better aptitude to regulate aerobic and anaerobic capacities when exposed to acute hypoxia.
Resumo:
A modified method for the calculation of the normalized faradaic charge (q fN) is proposed. The method involves the simulation of an oxidation process, by cyclic voltammetry, by employing potentials in the oxygen evolution reaction region. The method is applicable to organic species whose oxidation is not manifested by a defined oxidation peak at conductive oxide electrodes. The variation of q fN for electrodes of nominal composition Ti/RuX Sn1-X O2 (x = 0.3, 0.2 and 0.1), Ti/Ir0.3Ti0.7O2 and Ti/Ru0.3Ti0.7O2 in the presence of various concentrations of formaldehyde was analyzed. It was observed that electrodes containing SnO2 are the most active for formaldehyde oxidation. Subsequently, in order to test the validity of the proposed model, galvanostatic electrolyses (40 mA cm-2) of two different formaldehyde concentrations (0.10 and 0.01 mol dm-3) were performed. The results are in agreement with the proposed model and indicate that this new method can be used to determine the relative activity of conductive oxide electrodes. In agreement with previous studies, it can be concluded that not only the nature of the electrode material, but also the organic species in solution and its concentration are important factors to be considered in the oxidation of organic compounds.
Resumo:
We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.
Resumo:
The [Ru3O(Ac)6(py)2(CH3OH)]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.
Resumo:
Purpose: The aim of this study was to verify the influence of aerobic fitness (VO(2)max) on internal training loads, as measured by the session rating of perceived exertion (session-RPE) method. Methods: Nine male professional outfield futsal players were monitored for 4 wk of the in-season period with regards to the weekly accumulated session-RPE, while participating in the same training sessions. Single-session-RPE was obtained from the product of a 10-point RPE scale and the duration of exercise. Maximal oxygen consumption was determined during an incremental treadmill test. Results: The average training load throughout the 4 wk period varied between 2,876 and 5,035 arbitrary units. Technical-tactical sessions were the predominant source of loading. There was a significant correlation between VO(2)max (59.6 +/- 2.5 mL.kg(-1).min(-1)) and overall training load accumulated over the total period (r = -0.75). Conclusions: The VO(2)max plays a key role in determining the magnitude of an individual's perceived exertion during futsal training sessions.