987 resultados para adipocyte potential for differentiation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cDNAs encoding wild type (WT) human receptor tyrosine kinase c-Kit and a constitutively activated mutant, V816Kit, were introduced into granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent early murine hemopoietic cells, which had been transformed with activated Myb, WTKit cells were able to grow in the presence of the human ligand for Kit, stem cell factor (SCF), but displayed reduced growth and clonogenic potential in either SCF or GM-CSF compared with the parental cells in GM-CSF. In contrast, V816Kit cells grew without factor at a higher rate than the parental cells in GM-CSF and displayed increased clonogenicity. Dissection of the growth characteristics in liquid culture showed that in the presence of appropriate factors, the different populations had similar proliferation rates, but that V816Kit profoundly increased cell survival compared with WTKit or parental cells, This suggests that the signals transduced by WTKit activated with SCF, and by V816Kit, were not identical. Also, WTKit and V816Kit-expressing cells both varied from the early myeloid progenitor phenotype of the parental cells and gave rise to a small number of large to giant adherent cells that expressed macrophage (alpha-naphthyl acetate) esterase and neutrophil (naphtol-AS-D-chloroacetate) esterase, were highly phagocytic and phenotypically resembled histiocytes. Thus, WTKit activated by SCF and V816Kit were able to induce differentiation in a proportion of Myb-transformed myeloid cells. The factor independent V816Kit cells, unlike the parental and WTKit expressing cells, were shown to produce tumors of highly mitotic, invasive cells at various stages of differentiation in syngeneic mice. These results imply that constitutively activated Kit can promote the development of differentiated myeloid tumors and that its oncogenic effects are not restricted to lineages (mast cell and B-cell acute lymphoblastic leukemia), which have been reported previously. Furthermore, the mixed populations of cells in culture and in the tumors phenotypically resembled the leukemic cells from patients with monocytic leukemia with histiocytic differentiation (acute myeloid leukemia-M5c), a newly proposed subtype of myeloid leukemia. (C) 1997 by The American Society of Hematology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of mesenchymal stem cells to generate functional neurons in culture is still a matter of controversy. In order to assess this issue, we performed a functional comparison between neuronal differentiation of human MSCs and fetal-derived neural stem cells (NSCs) based on morphological, immunocytochemical, and electrophysiological criteria. Furthermore, possible biochemical mechanisms involved in this process were presented. NF200 immunostaining was used to quantify the yield of differentiated cells after exposure to CAMP. The addition of a PKA inhibitor and Ca(2+) blockers to the differentiation medium significantly reduced the yield of differentiated cells. Activation of CREB was also observed on MSCs during maturation. Na(+)-, K(+)-, and Ca(2+)-voltage-dependent currents were recorded from MSCs-derived cells. In contrast, significantly larger Na(+) currents, firing activity, and spontaneous synaptic currents were recorded from NSCs. Our results indicate that the initial neuronal differentiation of MSCs is induced by CAMP and seems to be dependent upon Ca(2+) and the PKA pathway. However, compared to fetal neural stem cells, adult mesenchymal counterparts are limited in their neurogenic potential. Despite the similar yield of neuronal cells, NSCs achieved a more mature functional state. Description of the underlying mechanisms that govern MSCs` differentiation toward a stable neuronal phenotype and their limitations provides a unique opportunity to enhance our understanding of stem cell plasticity. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. The hippocampal formation is a specific structure in the brain where neurogenesis occurs throughout adulthood and in which the neuronal cell loss causes various demential states. The main goal of this study was to verify whether fetal neural progenitor cells (NPCs) from transgenic rats expressing green fluorescent protein (GFP) retain the ability to differentiate into neuronal cells and to integrate into the hippocampal circuitry after transplantation. Methods. NPCs were isolated from E14 (gestational age: 14 days postconception) transgenic-Lewis and wild-type Sprague-Dawley rat embryos. Wild-type and transgenic cells were expanded and induced to differentiate into a neuronal lineage in vitro. Immunocytochemical and electrophysiological analysis were performed in both groups. GFP-expressing cells were implanted into the hippocampus and recorded electrophysiologically 3 months thereafter. Immunohistochemical analysis confirmed neuronal differentiation, and the yield of neuronal cells was determined stereologically. Results. NPCs derived from wild-type and transgenic animals are similar regarding their ability to generate neuronal cells in vitro. Neuronal maturity was confirmed by immunocytochemistry and electrophysiology, with demonstration of voltage-gated ionic currents, firing activity, and spontaneous synaptic currents. GFP-NPCs were also able to differentiate into mature neurons after implantation into the hippocampus, where they formed functional synaptic contacts. Conclusions. GFP-transgenic cells represent an important tool in transplantation studies. Herein, we demonstrate their ability to generate functional neurons both in vitro and in vivo conditions. Neurons derived from fetal NPCs were able to integrate into the normal hippocampal circuitry. The high yield of mature neurons generated render these cells important candidates for restorative approaches based on cell therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have suggested that abnormal corneal wound healing in patients after photorefractive keratectomy (PRK) is associated with the appearance of myofibroblasts in the stroma between two and four weeks after surgery. The purpose of this study was to examine potential myofibroblast progenitor cells that might express other filament markers prior to completion of the differentiation pathway that yields alpha-smooth muscle actin (SMA)-expressing myofibroblasts associated with haze localized beneath the epithelial basement membrane after PRK. Twenty-four female rabbits that had -9 diopter PRK were sacrificed at 1 week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were collected, frozen at -80 degrees C, and analyzed by immunocytochemistry using anti-vimentin, anti-desmin, and anti-SMA antibodies. Double immunostaining was performed for the co-localization of SMA with vimentin or desmin with SMA. An increase in vimentin expression in stromal cells is noted as early as 1 week after PRK in the rabbit cornea. As the healing response continues at two or three weeks after surgery, many stromal cells expressing vimentin also begin to express desmin and SMA. By 4 weeks after the surgery most, if not all, myofibroblasts express vimentin, desmin and SMA. Generalized least squares regression analysis showed that there was strong evidence that each of the marker groups differed in expression over time compared to the other two (p < 0.01). Intermediate filaments - vimentin and desmin co-exist in myofibroblasts along with SMA and may play an important role in corneal remodeling after photorefractive keratectomy. The earliest precursors of myofibroblasts destined to express SMA and desmin are detectible by staining for vimentin at 1 week after surgery. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have suggested that abnormal corneal wound healing in patients after photorefractive keratectomy (PRK) is associated with the appearance of myofibroblasts in the stroma between two and four weeks after surgery. The purpose of this study was to examine potential myofibroblast progenitor cells that might express other filament markers prior to completion of the differentiation pathway that yields a-smooth muscle actin (SMA)-expressing myofibroblasts associated with haze localized beneath the epithelial basement membrane after PRK. Twenty-four female rabbits that had -9 diopter PRK were sacrificed at I week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were collected, frozen at -80 degrees C, and analyzed by immunocytochemistry using anti-vimentin, anti-desmin, and anti-SMA antibodies. Double immunostaining was performed for the co-localization of SMA with vimentin or desmin with SMA. An increase in vimentin expression in stromal cells is noted as early as 1 week after PRK in the rabbit cornea. As the healing response continues at two or three weeks after surgery, many stromal cells expressing vimentin also begin to express desmin and SMA. By 4 weeks after the surgery most, if not all, myofibroblasts express vimentin, desmin and SMA. Generalized least squares regression analysis showed that there was strong evidence that each of the marker groups differed in expression over time compared to the other two (p < 0.01). Intermediate filaments - vimentin and desmin co-exist in myofibroblasts along with SMA and may play an important role in corneal remodeling after photorefractive keratectomy. The earliest precursors of myofibroblasts destined to express SMA and desmin are detectible by staining for vimentin at I week after surgery. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glial fibrillary acidic protein (GFAP) is a member of the intermediary filament protein family. It is an important component of astrocytes and a known diagnostic marker of glial differentiation. GFAP is expressed in other neural tumors and pleomorphic adenoma and, less frequently, in cartilage tumors, chordomas, and soft tissue myoepitheliomas. The aim of this study was to evaluate the role of GFAP and its reliability in nonglial tumors as an immunohistochemical marker. We evaluated GFAP gene and protein expression using Q-PCR and immunohistochemistry, respectively, in 81 and 387 cases of soft tissue, bone tumors, and salivary pleomorphic adenomas. Immunohistochemistry staining for GFAP was observed in all osteosarcomas (8 cases), all pleomorphic adenomas (7 cases), in 5 of 6 soft tissue myoepitheliomas, and in 21 of 76 chondrosarcomas. By Q-PCR, GFAP was highly expressed in pleomorphic adenomas and, to a lesser extent, chondrosarcomas, soft tissue myoepitheliomas, and chondroblastic osteosarcomas. The results that we obtained by immunohistochemistry and Q-PCR were well correlated. GFAP is a potential marker for tumors with cartilaginous differentiation, supported by evidence that GFAP is expressed in certain cases of myoepithelial tumors by immunohistochemistry, including soft tissue myoepitheliomas, which are related to cartilaginous differentiation. These findings contribute significantly to the diagnosis of soft tissue myoepitheliomas with cartilaginous differentiation and chondroblastic osteosarcoma in mesenchymal tumors. Modern Pathology ( 2009) 22, 1321-1327; doi: 10.1038/modpathol.2009.99; published online 7 August 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tartrate-resistant acid phosphatase (TRAP) is a well-known marker of osteoclasts and bone resorption. Here we have investigated whether osteoblast-like cells (hFOB 1.19) present TRAP activity and how would be its pattern of expression during osteoblastic differentiation. We also observed how the osteoblastic differentiation affected the reduced glutathione levels. TRAP activity was measured using the p-nitrophenylphosphate substrate. The osteogenic potential of hFOB 1.19 cells was studied by measuring alkaline phosphatase activity and mineralized nodule formation. Oxidative stress was determined by HPLC and DNTB assays. TRAP activity and the reduced glutathione-dependent microenvironment were modulated during osteoblastic differentiation. During this phase, TRAP activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day, decreasing thereafter. We demonstrate that TRAP activity is modulated during osteoblastic differentiation, possibly in response to the redox state of the cell, since it seemed to depend on suitable levels of reduced glutathione.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to evaluate bone formation after application of different doses of recombinant human bone morphogenetic protein-2 (rhBMP-2) combined with monoolein or poloxamer gels, in critical bone defects of rats. Forty-five Wistar rats were divided into nine treatment groups with five animals each: I: application of 1 A mu g rhBMP-2 + monoolein; II: 3 A mu g rhBMP-2 + monoolein; III: 7 A mu g rhBMP-2 + monoolein; IV: 1 A mu g rhBMP-2 + poloxamer; V: 3 A mu g rhBMP-2 + poloxamer; VI: 7 A mu g rhBMP-2 + poloxamer; VII: monoolein only; VIII: poloxamer only; and IX: critical bone defect only. A critical-sized defect of 6 mm diameter was produced in the left parietal bone and it was filled with gels of the above mentioned treatments. After 2 weeks, the calvarial bones were removed for histological processing. Bone formation in the groups that received poloxamer gel and rhBMP-2 was not significantly different from the control group (IX). Groups receiving monoolein and rhBMP-2 (1 and 3 A mu g) and those that received only the carriers (VII and VIII) had less bone formation in relation to the control. The association of rhBMP-2 to both poloxamer and monoolein did not exhibit any significant differentiation in bone formation in comparison with the control group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allozyme analysis was used to address the question of the source of the Australian populations of the monarch butterfly Danaus plexippus (L.). The study had three major aims: (1) To compare the levels of diversity of Australian and Hawaiian populations with potential source populations. (2) To determine whether eastern and western North American populations were sufficiently divergent for the Australian populations to be aligned to a source population. (3) To compare the differentiation among regions in Australia and North America to test the prediction of greater genetic structure in Australia, as a consequence of reduced migratory behaviour. The reverse was found, with F-ST values an order of magnitude lower in Australia than in North America. Predictably, Australian and Hawaiian populations had lower allelic diversity, but unexpected higher heterozygosity values than North American populations. It was not possible to assign the Australian populations to a definitive source, although the high levels of similarity of Australian populations to each other suggest a single colonization event. The possibility that the Australian populations have not been here long enough to reach equilibrium is discussed. (C) 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 75, 437-452.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A substantial number of GH regulated genes have been reported in mature hepatocytes. but genes involved in GH-initiated cell differentiation have not yet been identified. Here we have studied a, ell-characterised model of GH-dependent differentiation, adipogenesis of 3T3-F442A preadipocytes, to identify genes rapidly induced by GH. Using the suppression subtractive hybridisation technique, we have identified eight genes induced within 60 min of GH treatment, and verified these by northern analysis. Six were identifiable as Stat 2. Stat 3, thrombospondin-1. oncostatin M receptor beta chain. a DEAD box RNA helicase. and muscleblind. a developmental transcription factor. Bioinformatic approaches assigned one of the two remaining unknown genes as a novel 436 residue serine,threonine kinase. As each of the identified genes hake important developmental roles. they may be important in initiating GH-induced adipogenesis. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

E2F regulation is essential for normal cell cycle progression. Therefore, it is not surprising that squamous cell carcinoma cell lines (SCC) overexpress E2F1 and exhibit deregulated E2F activity when compared with normal keratinocytes. Indeed, deliberate E2F1 deregulation has been shown to induce hyperplasia and skin tumor formation. In this study, we report on a dual role for E2F as a mediator of keratinocyte proliferation and modulator of squamous differentiation. Overexpression of E2F isoforms in confluent primary keratinocyte cultures resulted in suppression of differentiation-associated markers. Moreover, we found that the DNA binding domain and the trans-activation domain of E2F1 are important in mediating suppression of differentiation. Use of a dominant/negative form of E2F1 ( E2F d/n) found that E2F inhibition alone is sufficient to suppress the activity of proliferation-associated markers but is not capable of inducing differentiation markers. However, if the E2F d/n is expressed in differentiated keratinocytes, differentiation marker activity is further induced, suggesting that E2F may act as a modulator of squamous differentiation. We therefore examined the effects of E2F d/n in a differentiation- insensitive SCC cell line. We found that treatment with the differentiating agent, 12-O-tetradecanoyl- phorbol-13-acetate (TPA), or expression of E2F d/n alone had no effect on differentiation markers. However, a combination of E2F d/n + TPA induced the expression of differentiation markers. Combined, these data indicate that E2F may play a key role in keratinocyte differentiation. These data also illustrate the unique potential of anti-E2F therapies in arresting proliferation and inducing differentiation of SCCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O osso é um tecido metabolicamente ativo e a sua remodelação é importante para regular e manter a massa óssea. Esse processo envolve a reabsorção do material ósseo por ação dos osteoclastos e a síntese de novo material ósseo mediado pelos osteoblastos. Vários estudos têm sugerido que a pressão arterial elevada está associada a alterações no metabolismo do cálcio, o que leva ao aumento da perda de cálcio e da remoção de cálcio do osso. Embora as alterações no metabolismo ósseo sejam um efeito adverso associado a alguns fármacos antihipertensores, o conhecimento em relação a este efeito terapêutico ligado com os bloqueadores de canais de cálcio é ainda muito escasso. Uma vez que os possíveis efeitos no osso podem ser atribuídos à ação antihipertensiva dessas moléculas, ou através de um efeito direto nas atividades metabólicas ósseas, torna-se necessário esclarecer este assunto. Devido ao facto de que as alterações no metabolismo ósseo são um efeito adverso associado a alguns fármacos antihipertensores, o objetivo deste trabalho é avaliar o efeito que os bloqueadores dos canais de cálcio exercem sobre as células ósseas humanas, nomeadamente osteoclastos, osteoblastos e co-culturas de ambos os tipos celulares. Verificou-se que os efeitos dos fármacos antihipertensores variaram consoante o fármaco testado e o sistema de cultura usado. Alguns fármacos revelaram a capacidade de estimular a osteoclastogénese e a osteoblastogénese em concentrações baixas. Independentemente da identidade do fármaco, concentrações elevadas revelaram ser prejudiciais para a resposta das células ósseas. Os mecanismos intracelulares através dos quais os efeitos foram exercidos foram igualmente afetados de forma diferencial pelos diferentes fármacos. Em resumo, este trabalho demonstrou que os bloqueadores dos canais de cálcio utilizados possuem a capacidade de afetar direta- e indiretamente a resposta de células ósseas humanas, cultivadas isoladamente ou co-cultivadas. Este tipo de informação é crucial para compreender e prevenir os potenciais efeitos destes fármacos no tecido ósseo, e também para adequar e eventualmente melhorar a terapêutica antihipertensora de cada paciente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two distinct subsets of γδ T cells that produce interleukin 17 (IL-17) (CD27(-) γδ T cells) or interferon-γ (IFN-γ) (CD27(+) γδ T cells) develop in the mouse thymus, but the molecular determinants of their functional potential in the periphery remain unknown. Here we conducted a genome-wide characterization of the methylation patterns of histone H3, along with analysis of mRNA encoding transcription factors, to identify the regulatory networks of peripheral IFN-γ-producing or IL-17-producing γδ T cell subsets in vivo. We found that CD27(+) γδ T cells were committed to the expression of Ifng but not Il17, whereas CD27(-) γδ T cells displayed permissive chromatin configurations at loci encoding both cytokines and their regulatory transcription factors and differentiated into cells that produced both IL-17 and IFN-γ in a tumor microenvironment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunological tolerance, that is, the failure to mount an immune response to an otherwise immunogenic molecule, is one of the fundamental questions in immunology. The fact that lymphocytes express antigen receptors that are generated randomly and have the potential to recognize any conceivable antigen, adds another puzzle to the physiology of immunological tolerance. The other side of the coin, the general absence of immune responses to self antigens, is ensured by a tight regulation and several selection steps during T and B cell differentiation. One of these processes is the differentiation of regulatory T cells (Treg). While developing in the thymus, T cell clones bearing receptors with high affinity/avidity to antigens present at the time of differentiation may be eliminated by apoptosis or, alternatively, express Foxp3 and become Treg. Treg are key players in the regulation of immunological tolerance since humans and mice with complete loss of function variants of this gene develop fatal autoimmune conditions early in life.(...)