959 resultados para ab initio electron theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous experimental studies showed that the presence of O-2 greatly enhances NO-carbon reaction while it depresses N2O-carbon reaction on carbon surfaces. A popular explanation for the rate increase is that the addition of O-2 results in a large number of reactive carbon-oxygen complexes, and decomposition of these complexes produces many more active sites. The explanation for the latter is that excess O-2 simply blocks the active sites, thus reducing the rate of N2O-carbon reaction. The contradiction is that O-2 can also occupy active sites in NO-carbon reaction and produce active sites in N2O-carbon reduction. By using ab initio calculation, we find that the opposite roles of O-2 are caused by the different manners of N2O and NO adsorption on the carbon surface. In the presence of excess O-2, most Of the active sites are occupied by oxygen groups. In the competition for the remaining active sites, NO is more likely to chemisorb in the form of NO2 and NO chemisorption is mon thermodynamically favorable than O-2 chemisorption. By contrast, the presence of excess O-2 makes N2O chemisorption much less thermally stable either on the consecutive edge sites or edge sites isolated by semiquinone oxygen. A detailed analysis and discussion of the reaction mechanism of N-2 formation from NO- and N2O-carbon reaction in the presence of O-2 is presented in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the ab initio procedure employed to build an activation model for the alpha 1b-adrenergic receptor (alpha 1b-AR). The first version of the model was progressively modified and complicated by means of a many-step iterative procedure characterized by the employment of experimental validations of the model in each upgrading step. A combined simulated (molecular dynamics) and experimental mutagenesis approach was used to determine the structural and dynamic features characterizing the inactive and active states of alpha 1b-AR. The latest version of the model has been successfully challenged with respect to its ability to interpret and predict the functional properties of a large number of mutants. The iterative approach employed to describe alpha 1b-AR activation in terms of molecular structure and dynamics allows further complications of the model to allow prediction and interpretation of an ever-increasing number of experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An ab initio study of the adsorption processes on NOx compounds on (1 1 0) SnO2 surface is presented with the aim of providing theoretical hints for the development of improved NOx gas sensors. From first principles calculations (DFT¿GGA approximation), the most relevant NO and NO2 adsorption processes are analyzed by means of the estimation of their adsorption energies. The resulting values and the developed model are also corroborated with experimental desorption temperatures for NO and NO2, allowing us to explain the temperature-programmed desorption experiments. The interference of the SO2 poisoning agent on the studied processes is discussed and the adsorption site blocking consequences on sensing response are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic structure of the edge-sharing cuprate compound Li2CuO2 has been investigated with highly correlated ab initio electronic structure calculations. The first- and second-neighbor in-chain magnetic interactions are calculated to be 142 and -22 K, respectively. The ratio between the two parameters is smaller than suggested previously in the literature. The interchain interactions are antiferromagnetic in nature and of the order of a few K only. Monte Carlo simulations using the ab initio parameters to define the spin model Hamiltonian result in a Nel temperature in good agreement with experiment. Spin population analysis situates the magnetic moment on the copper and oxygen ions between the completely localized picture derived from experiment and the more delocalized picture based on local-density calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physical contributions to the KNiF3 magnetic exchange coupling integral have been obtained from specially designed ab initio cluster model calculations. Three important mechanisms have been identified. These are the delocalization of the magnetic orbitals into the anion p band, the variational contribution of the second-order interactions, and the many-body terms hidden in the two-body operator and the Heisenberg Hamiltonian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physical contributions to the KNiF3 magnetic exchange coupling integral have been obtained from specially designed ab initio cluster model calculations. Three important mechanisms have been identified. These are the delocalization of the magnetic orbitals into the anion p band, the variational contribution of the second-order interactions, and the many-body terms hidden in the two-body operator and the Heisenberg Hamiltonian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction models of atomic Al with Si4H9, Si4H7, and Si6H9 clusters have been studied to simulate Al chemisorption on the Si(111) surface in the atop, fourfold atop, and open sites. Calculations were carried out using nonempirical pseudopotentials in the framework of the ab initio Hartree-Fock procedure. Equilibrium bond distances, binding energies for adsorption, and vibrational frequencies of the adatoms are calculated. Several basis sets were used in order to show the importance of polarization effects, especially in the binding energies. Final results show the importance of considering adatom-induced relaxation effects to specify the order of energy stabilities for the three different sites, the fourfold atop site being the preferred one, in agreement with experimental findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A linear M-O-M (M=metal, O=oxygen) cluster embedded in a Madelung field, and also including the quantum effects of the neighboring ions, is used to represent the alkaline-earth oxides. For this model an ab initio wave function is constructed as a linear combination of Slater determinants written in an atomic orbital basis set, i.e., a valence-bond wave function. Each valence-bond determinant (or group of determinants) corresponds to a resonating valence-bond structure. We have obtained ab initio valence-bond cluster-model wave functions for the electronic ground state and the excited states involved in the optical-gap transitions. Numerical results are reasonably close to the experimental values. Moreover, the model contains the ionic model as a limiting case and can be readily extended and improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an analysis of the M-O chemical bonding in the binary oxides MgO, CaO, SrO, BaO, and Al2O3 based on ab initio wave functions. The model used to represent the local environment of a metal cation in the bulk oxide is an MO6 cluster which also includes the effect of the lattice Madelung potential. The analysis of the wave functions for these clusters leads to the conclusion that all the alkaline-earth oxides must be regarded as highly ionic oxides; however, the ionic character of the oxides decreases as one goes from MgO, almost perfectly ionic, to BaO. In Al2O3 the ionic character is further reduced; however, even in this case, the departure from the ideal, fully ionic, model of Al3+ is not exceptionally large. These conclusions are based on three measures, a decomposition of the Mq+-Oq- interaction energy, the number of electrons associated to the oxygen ions as obtained from a projection operator technique, and the analysis of the cation core-level binding energies. The increasing covalent character along the series MgO, CaO, SrO, and BaO is discussed in view of the existing theoretical models and experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite cluster models and a variety of ab initio wave functions have been used to study the electronic structure of bulk KNiF3. Several electronic states, including the ground state and some charge-transfer excited states, have been considered. The study of the cluster-model wave functions has permitted an understanding of the nature of the chemical bond in the electronic ground state. This is found to be highly ionic and the different ionic and covalent contributions to the bonding have been identified and quantified. Finally, we have studied the charge-transfer excited states leading to the optical gap and have found that calculated and experimental values are in good agreement. The wave functions corresponding to these excited states have also been analyzed and show that although KNiF3 may be described as a ligand-to-metal charge-transfer insulator there is a strong configuration mixing with the metal-to-metal charge-transfer states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of different correlation functionals has been tested for alkali metals, Li to Cs, interacting with cluster models simulating different active sites of the Si(111) surface. In all cases, the ab initio Hartree-Fock density has been obtained and used as a starting point. The electronic correlation energy is then introduced as an a posteriori correction to the Hartree-Fock energy using different correlation functionals. By making use of the ionic nature of the interaction and of different dissociation limits we have been able to prove that all functionals tested introduce the right correlation energy, although to a different extent. Hence, correlation functionals appear as an effective and easy way to introduce electronic correlation in the ab initio Hartree-Fock description of the chemisorption bond in complex systems where conventional configuration interaction techniques cannot be used. However, the calculated energies may differ by some tens of eV. Therefore, these methods can be employed to get a qualitative idea of how important correlation effects are, but they have some limitations if accurate binding energies are to be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of magnetic coupling in KNiF3 and K2 NiF4 is studied by means of an ab initio cluster model approach. By a detailed study of the mapping between eigenstates of the exact nonrelativistic and spin model Hamiltonians it is possible to obtain the magnetic coupling constant J and to compare ab initio cluster-model values with those resulting from ab initio periodic Hartree-Fock calculations. This comparison shows that J is strongly determined by two-body interactions; this is a surprising and unexpected result. The importance of the ligands surrounding the basic metal-ligand-metal interacting unit is reexamined by using two different partitions and the constrained space orbital variation method of analysis. This decomposition enables us to show that this effect is basically environmental. Finally, dynamical electronic correlation effects have found to be critical in determining the final value of the magnetic coupling constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ab initio cluster model approach has been used to study the electronic structure and magnetic coupling of KCuF3 and K2CuF4 in their various ordered polytype crystal forms. Due to a cooperative Jahn-Teller distortion these systems exhibit strong anisotropies. In particular, the magnetic properties strongly differ from those of isomorphic compounds. Hence, KCuF3 is a quasi-one-dimensional (1D) nearest neighbor Heisenberg antiferromagnet whereas K2CuF4 is the only ferromagnet among the K2MF4 series of compounds (M=Mn, Fe, Co, Ni, and Cu) behaving all as quasi-2D nearest neighbor Heisenberg systems. Different ab initio techniques are used to explore the magnetic coupling in these systems. All methods, including unrestricted Hartree-Fock, are able to explain the magnetic ordering. However, quantitative agreement with experiment is reached only when using a state-of-the-art configuration interaction approach. Finally, an analysis of the dependence of the magnetic coupling constant with respect to distortion parameters is presented.