981 resultados para Ziegler-Natta catalyst


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A modelagem matemática é uma ferramenta que apresenta diversas vantagens no estudo de processos industriais como, por exemplo, entender e desenvolver tecnologias, avaliar o impacto de variáveis nas propriedades do produto, estudos de redução de custos de produção e de impacto ambiental. O objetivo deste trabalho é desenvolver e validar um modelo matemático para um reator de bancada de polimerização em lama de eteno, enfatizando o desenvolvimento do modelo cinético. O modelo do reator contemplou: 1) modelo de troca térmica; 2) modelo termodinâmico; 3) modelo de transferência de massa gás-líquido e 4)modelo cinético. Para uma melhor predição do modelo foi realizada a estimação de alguns dos seus parâmetros conforme uma metodologia que compreendeu a análise de sensibilidade paramétrica e das variáveis de entrada do modelo e os efeitos de um planejamento de experimentos para a geração dos dados experimentais. A metodologia utilizada mostrou-se eficiente na avaliação do modelo quanto as suas características de predição, ajudando na identificação de possíveis falhas e evidenciando as vantagens de uma adequada metodologia experimental. Uma etapa determinante para o processo de estimação dos parâmetros é a escolha dos dados de saída a utilizar para a estimativa de determinado parâmetro. A modelagem do reator experimental mostrou-se satisfatória em todos os aspectos do processo (troca térmica, cinética, termodinâmica e transferência de massa), pois o modelo prediz com precisão as características encontradas nos experimentos. Assim, este pode ser utilizado para avaliar o mecanismo reacional envolvido de forma a aproximar-se das reais características do processo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanical and thermo-oxidative degradation of high density polyethylene (HDPE) was measured in a twin-screw extruder using various processing conditions. Two types of HDPE, Phillips and Ziegler-Natta, having different levels of terminal vinyl unsaturation were analysed. Mild screw profiles, having mainly conveying elements, have short mean residence times then profiles with kneading discs and left hand elements. Carbonyl and traps-vinylene group concentrations increased, whereas vinyl group concentration decreased with number of extrusions. Higher temperature profiles intensified these effects. The thermo-mechanical degradation mechanism begins with chain scission in the longer chains due to their higher probability of entanglements. These macroradicals then react with the vinyl terminal unsaturations of other chains producing chain branching. Shorter chains are more mobile, not suffering scission but instead are used for grafting the macroradicals, increasing the molecular weight. Increase in the levels of extrusion temperature, shear and vinyl end groups content facilitates the thermo-mechanical degradation reducing the amount of both, longer chains via chain scission and shorter chains via chain branching, narrowing the polydispersity. Phillips HDPE produces a higher level of chain branching than does the Ziegler-Natta type. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The two main objectives of the research work conducted were firstly, to investigate the processing and rheological characteristics of a new generation metallocene catalysed linear low density polyethylene (m-LLDPE), in order to establish the thermal oxidative degradation mechanism, and secondly, to examine the role of selected commercial stabilisers on the melt stability of the polymers. The unstabilised m-LLDPE polymer was extruded (pass I) using a twin screw extruder, at different temperatures (210-285°C) and screw speeds (50-20rpm) and was subjected to multiple extrusions (passes, 2-5) carried out under the same processing conditions used in the first pass. A traditional Ziegler/Natta catalysed linear low density polyethylene (z-LLDPE) produced by the same manufacturer was also subjected to a similar processing regime in order to compare the processability and the oxidative degradation mechanism (s) of the new m-LLDPE with that of the more traditional z-LLDPE. The effect of some of the main extrusion characteristics of the polymers (m-LLDPE and z-LLDPE) on their melt rheological behaviour was investigated by examining their melt flow performance monitored at two fixed low shear rate values, and their rheological behaviour investigated over the entire shear rates experienced during extrusion using a twin-bore capillary rheometer. Capillary rheometric measurements, which determine the viscous and elastic properties of polymers, have shown that both polymers are shear thinning but the m-LLDPE has a higher viscosity than z-LLDPE and the extent of reduction in viscosity of the former when the extrusion temperature was increased from 210°C to 285°C was much higher than in the case of the z-LLDPE polymer. This was supplied by the findings that the m-LLDPE polymer required higher power consumption under all extrusion conditions examined. It was fUliher revealed that the m-LLDPE undergoes a higher extent of melt fracture, the onset of which occurs under much lower shear rates than the Ziegler-based polymer and this was attributed to its higher shear viscosity and narrower molecular weight distribution (MWD). Melt flow measurements and GPC have shown that after the first extrusion pass, the initial narrower MWD of m-LLDPE is retained (compared to z-LLDPE), but upon further multiple extrusion passes it undergoes much faster broadening of its MWD which shifts to higher Mw polymer fractions, paliicularly at the high screw speeds. The MWD of z-LLDPE polymer on the other hand shifts towards the lower Mw end. All the evidence suggest therefore the m-LLDPE undergoes predominantly cross-linking reactions under all processing conditions whereas z-LLDPE undergoes both cross-linking and chain scission reactions with the latter occurring predominantly under more severe processing conditions (higher temperatures and screw speeds, 285°CI200rpm). The stabilisation of both polymers with synergistic combinations of a hindered phenol (Irganox 1076) and a phosphite (Weston 399) at low concentrations has shown a high extent of melt stabilisation in both polymers (extrusion temperatures 210-285°C and screw speeds 50-200rpm). The best Irganox 1076/Weston 399 system was found to be at an optimum 1:4 w/w ratio, respectively and was found to be most effective in the z-LLDPE polymer. The melt stabilising effectiveness of a Vitamin E/Ultranox 626 system used at a fraction of the total concentration of Irganox 1076/Weston 399 system was found to be higher in both polymers (under all extrusion conditions). It was found that AOs which operate primarily as alkyl (Re) radical scavengers are the most effective in inhibiting the thermal oxidative degradation of m-LLDPE in the melt; this polymer was shown to degrade in the melt primarily via alky radicals resulting in crosslinking. Metallocene polymers stabilised with single antioxidants of Irganox HP 136 (a lactone) and Irganox E201 (vitamin E) produced the highest extent of melt stability and the least discolouration during processing (260°C/1 OOrpm). Furthermore, synergistic combinations of Irganox HP I 36/Ultranox 626 (XP-60) system produced very high levels of melt and colour stability (comparable to the Vitamin E based systems) in the mLLDPE polymer. The addition of Irganox 1076 to an Irganox HP 136/Ultranox 626 system was found not to result in increasing melt stability but gave rise to increasing discolouration of the m-LLDPE polymer. The blending of a hydroxylamine (lrgastab FS042) with a lactone and Vitamin E (in combination with a phosphite) did not increase melt stability but induced severe discolouration of resultant polymer samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The melting and densification behaviour of a range of Polyethylenes (PEs) produced from 2 different catalysts, Ziegler-Natta and Metallocene types, were investigated using a novel visual data acquisition and analysis system (TP Picture®), developed by Total Petrochemicals Research Feluy [1]. Differences in the dissolution behaviour of the bubbles were observed and correlations with the material density, densification rate, bubble size / distribution and MFI were determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of functional groups bearing silica/poly(styrene-co-4-vinylpyridine) core-shell particles as a support for a zirconocene catalyst in ethylene polymerization was studied. Several factors affecting the behavior of the supported catalyst and the properties of the resulting polymer, such as time, temperature, Al/N (molar ratio), and Al/Zr (molar ratio), were examined. The conditions of the supported catalyst preparation were more important than those of the ethylene polymerization. The state of the supported catalyst itself played a decisive role in both the catalytic behavior of the supported catalyst and the properties of polyethylene (PE). IR and X-ray photoelectron spectroscopy were used to follow the formation of the supports. The formation of cationic active species is hypothesized, and the performance of the core-shell-particle-supported zirconocene catalyst is discussed as well. The bulk density of the PE formed was higher than that of the polymer obtained from homogeneous and polymer-supported Cp2ZrCl2/methylaluminoxane catalyst systems. (C) 2001 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of various kinds of additives as well as aging of the catalyst on the polymerization of styrene catalyzed by TiCl4/MgCl2-AlEt3 system have been studied. Experiments show that in toluene the isotacticity of polystyrene can be up to 83% for aged catalyst, whereas when the catalyst is not aged. non-stereospecific polymer is the main product. When PCl3 is used as an additive, the catalyst system gives high activity and isotacticity. The use of a mixture of AlEt3/H2O (1: 1 mole ratio) as a cocatalyst is also efficient. The catalyst [TiCl4-PCl3/MgCl2-AlEt3/H2O] displays high activity and product isotacticity (94%) with an average molecular weight up to 2 X 10(-6). When Co(acac)(3) is added to to [TiCl4/MgCl2-AlEt3] catalyst after it was aged, the isotacticity can be up to 97%. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are expected to become the ideal constituent of many technologes, in particular for future generation electronics. This considerable interest is due to their unique electrical and mechanical properties. They show indeed super-high current-carrying capacity, ballistic electron transport and good field-emission properties. Then, these superior features make CNTs the most promising building blocks for electronic devices, as organic solar cells and organic light emitting devices (OLED). By using Focused Ion Beam (FIB) patterning it is possible to a obtain a high control on position, relative distances and diameter of CNTs. The present work shows how to grow three-dimensional architecture made of vertical-aligned CNTs directly on silicon. Thanks to the higher activity of a pre-patterned surface the synthesis process results very quick, cheap and simple. Such large area growths of CNTs could be used in preliminary test for application as electrodes for organic solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically aligned ZnO nanorods have been grown on silicon substrates pre-coated with thin, less than 10 nm, textured ZnO seeding layers via a vapor-solid mechanism. The ZnO seeding layers, which were essential for vertical alignment of ZnO nanorods without using any metal catalyst, were prepared by decomposing zinc acetate. The structure and the luminescence properties of the ZnO nanorods synthesized onto ZnO seeding layers were investigated and their morphologies were compared with those of single-crystalline GaN substrates and silicon substrates covered with sputtered ZnO flms. Patterning of ZnO seed layers using photolithography allowed the fabrication of patterned ZnO-nanorod arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the potential interest of informed learning as a catalyst for change in theological libraries. Informed learning is a label for the relational approach to information literacy and information literacy education. It was created to highlight the importance of simultaneous attention to both information and learning when we consider peoples’ experiences in their information rich lives. The paper explores the idea of informed learning, suggesting that serious attention to informed learning experiences may challenge our thinking about our role as information professionals and the ways in which we serve our clients. The paper then moves to explore our current understandings of informed learning in faith communities and suggests some ways in which theological librarians can work to build informed communities.