973 resultados para Yang-Baxter Equation
Resumo:
Pulse-amplitude-modulation chlorophyll fluorometry was used to examine changes in dark-adapted F-v/F-m of endosymbiotic dinoflagellate microalgae within the tissues of the temperate coral Plesiastrea versipora exposed to elevated seawater temperature. The F-v/F-m was markedly reduced following exposure of corals to 28 degrees C for 48 h. When corals were returned to ambient (24 degrees C) conditions, F-v/F-m increased in an initial rapid and then secondary slower phase. Tissue discolouration (coral bleaching), caused by a significant decrease in the density of algae, was observed during the first 2-3 days of the recovery period. After 14 days, F-v/F-m was still significantly lower than in control corals. The recovery of F-v/F-m is discussed in terms of repair processes within the symbiotic algae, division of healthy algae and also the selective removal of photo-damaged dinoflagellates. Under field conditions, bleached corals sampled at Heron Island Reef during a bleaching event had significantly lower F-v/F-m than non-bleached colonies; four months after the bleaching event, there were no differences in F-v/F-m or algal density in corals marked as having bleached or having shown no signs of colour loss. The results of this laboratory and field study are consistent with the hypothesis that an impairment of photosynthesis occurs during heat-stress, and is the underlying cause of coral bleaching.
Resumo:
The Yang-Mills-Higgs field generalizes the Yang-Mills field. The authors establish the local existence and uniqueness of the weak solution to the heat flow for the Yang-Mills-Higgs field in a vector bundle over a compact Riemannian 4-manifold, and show that the weak solution is gauge-equivalent to a smooth solution and there are at most finite singularities at the maximum existing time.
Resumo:
We give an asymptotic analytic solution for the generic atom-laser system with gain in a D-dimensional trap, and show that this has a non-Thomas-Fermi behavior. The effect is due to Bose-enhanced condensate growth, which creates a local-density maximum and a corresponding outward momentum component. In addition, the solution predicts amplified center-of-mass oscillations, leading to enhanced center-of-mass temperature.
Resumo:
Human N-acetyltransferase Type I (NAT1) catalyses the acetylation of many aromatic amine and hydrazine compounds and it has been implicated in the catabolism of folic acid. The enzyme is widely expressed in the body, although there are considerable differences in the level of activity between tissues. A search of the mRNA databases revealed the presence of several NAT1 transcripts in human tissue that appear to be derived from different promoters. Because little is known about NAT1 gene regulation, the present study was undertaken to characterize one of the putative promoter sequences of the NAT1 gene located just upstream of the coding region. We show with reverse-transcriptase PCR that mRNA transcribed from this promoter (Promoter 1) is present in a variety of human cell-lines, but not in quiescent peripheral blood mononuclear cells. Using deletion mutant constructs, we identified a 20 bp sequence located 245 bases upstream of the translation start site which was sufficient for basal NAT1 expression. It comprised an AP-1 (activator protein 1)-binding site, flanked on either side by a TCATT motif. Mutational analysis showed that the AP-1 site and the 3' TCATT sequence were necessary for gene expression, whereas the 5' TCATT appeared to attenuate promoter activity. Electromobility shift assays revealed two specific bands made up by complexes of c-Fos/Fra, c-Jun, YY-1 (Yin and Yang 1) and possibly Oct-1. PMA treatment enhanced expression from the NAT1 promoter via the AP-1-binding site. Furthermore, in peripheral blood mononuclear cells, PMA increased endogenous NAT1 activity and induced mRNA expression from Promoter I, suggesting that it is functional in vivo.
Resumo:
The problem of the negative values of the interaction parameter in the equation of Frumkin has been analyzed with respect to the adsorption of nonionic molecules on energetically homogeneous surface. For this purpose, the adsorption states of a homologue series of ethoxylated nonionic surfactants on air/water interface have been determined using four different models and literature data (surface tension isotherms). The results obtained with the Frumkin adsorption isotherm imply repulsion between the adsorbed species (corresponding to negative values of the interaction parameter), while the classical lattice theory for energetically homogeneous surface (e.g., water/air) admits attraction alone. It appears that this serious contradiction can be overcome by assuming heterogeneity in the adsorption layer, that is, effects of partial condensation (formation of aggregates) on the surface. Such a phenomenon is suggested in the Fainerman-Lucassen-Reynders-Miller (FLM) 'Aggregation model'. Despite the limitations of the latter model (e.g., monodispersity of the aggregates), we have been able to estimate the sign and the order of magnitude of Frumkin's interaction parameter and the range of the aggregation numbers of the surface species. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
In this work we study the existence and regularity of mild solutions for a damped second order abstract functional differential equation with impulses. The results are obtained using the cosine function theory and fixed point criterions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Smoothing the potential energy surface for structure optimization is a general and commonly applied strategy. We propose a combination of soft-core potential energy functions and a variation of the diffusion equation method to smooth potential energy surfaces, which is applicable to complex systems such as protein structures; The performance of the method was demonstrated by comparison with simulated annealing using the refinement of the undecapeptide Cyclosporin A as a test case. Simulations were repeated many times using different initial conditions and structures since the methods are heuristic and results are only meaningful in a statistical sense.
Resumo:
Calculating the estimated resting energy expenditure (REE) in severely obese patients is useful, but there is controversy concerning the effectiveness of available prediction equations (PE) using body weight (BW). We evaluated the efficacy of REE equations against indirect calorimetry (IC) in severely obese subjects and aimed to develop a new equation based on body composition compartments. One hundred and twenty severely obese patients had their REE measured (MREE) by IC and compared to the most commonly used PE (Harris-Benedict (HB), Ireton-Jones, Owen, and Mifflin St. Jeor). In a random sample (n = 60), a new REE equation based on fat-free mass (FFM) was developed and validated. All PE studied failed to estimate REE in severe obesity (low concordance correlation coefficient (CCC) and limits of agreement of nearly 50% of the sample +/- 10% of MREE). The HB equation using actual BW exhibited good results for all samples when compared to IC (2,117 +/- 518 kcal/day by HB vs. 2,139 +/- 423 kcal/day by MREE, P > 0.01); these results were blunted when patients were separated by gender (2,771 vs. 2,586 kcal/day, P < 0.001 in males and 1,825 vs. 1,939 kcal/day, P < 0.001 in females). A new resting energy expenditure equation prediction was developed using FFM, Horie-Waitzberg, & Gonzalez, expressed as 560.43 + (5.39 x BW) + (14.14 x FFM). The new resting energy expenditure equation prediction, which uses FFM and BW, demonstrates higher accuracy, precision, CCC, and limits of agreement than the standard PE in patients when compared to MREE (2,129 +/- 45 kcal/day vs. 2,139 +/- 423 kcal/day, respectively, P = 0.1). The new equation developed to estimate REE, which takes into account both FFM and BW, provides better results than currently available equations.
Resumo:
Purpose: The aim of this study was to compare the measured energy expenditure (EE) and the estimated basal EE (BEE) in critically ill patients. Materials and Methods: Seventeen patients from an intensive care unit were randomly evaluated. Indirect calorimetry was performed to calculate patient`s EE, and BEE was estimated by the Harris-Benedict formula. The metabolic state (EE/BEE x 100) was determined according to the following criteria: hypermetabolism, more than 130%; normal metabolism, between 90% and 130%; and hypometabolism, less than 90%. To determine the limits of agreement between EE and BEE, we performed a Bland-Altman analysis. Results: The average EE of patients was 6339 +/- 1119 kJ/d. Two patients were hypermetabolic (11.8%), 4 were hypometabolic (23.5%), and 11 normometabolic (64.7%). Bland-Altman analysis showed a mean of -126 +/- 2135 kJ/d for EE and BEE. Only one patient was outside the limits of agreement between the 2 methods (indirect calorimetry and Harris-Benedict). Conclusions: The calculation of energy needs can be done with the equation of Harris-Benedict associated with lower values of correction factors (approximately 10%) to avoid overfeeding, with constant monitoring of anthropometric and biochemical parameters to assess the nutritional changing and adjust the infusion of energy. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Objectives The methods currently available for the measurement of energy expenditure in patients, such as indirect calorimetry and double-labelled water, are expensive and are limited in Brazil to research projects. Thus, equations for the prediction of resting metabolic rate appear to be a viable alternative for clinical practice. However, there are no specific equations for the Brazilian population and few studies have been conducted on Brazilian women in the climacteric period using existing and commonly applied equations. On this basis, the objective of the present study was to investigate the concordance between the predictive equations most frequently used and indirect calorimetry for the measurement of resting metabolic rate. Methods We calculated the St. Laurent concordance correlation coefficient between the equations and resting metabolic rate calculated by indirect calorimetry in 46 climacteric women. Results The equation showing the best concordance was that of the FAO/WHO/UNU formula (0.63), which proved to be better than the Harris & Benedict equation (0.55) for the sample studied. Conclusions On the basis of the results of the present study, we conclude that the FAO/WHO/UNU formula can be used to predict better the resting metabolic rate of climacteric women. Further studies using more homogeneous and larger samples are needed to permit the use of the FAO/WHO/UNU formula for this population group with greater accuracy.