297 resultados para Xylem
Resumo:
Summary Inorganic phosphate (Pi) is a main limiting nutrient to the growth and production yield of plants in many agro-ecosystems. Plants have evolved a series of metabolic and developmental adaptations to cope with low Pi availability. PH01 has been identified as a protein involved in the loading of Pi into the xylem of roots in Arabidopsis. In this study, the PHO1 gene family in both higher plant Arabidopsis and lower plant Physcomitrella was characterized. Additional ten PHO1 homologues in Arabidopsis and three homologues in Physcomitrella were identified. All proteins harbor a SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the highly conserved C-terminal hydrophobic portion. RT-PCR analysis of the Arabidopsis PHO1 genes revealed a broad pattern of expression in leaves, roots, stems, and flowers for most genes, although two genes are expressed exclusively in flowers, indicating their potential roles not only in Pi transport but also in Pi homeostasis within the Arabidopsis plant. The regulation of gene expression by different nutrient-starvations showed that some genes are strongly up-regulated by elements other than Pi, e.g. by NO3, Mg, and Zn starvation. Northern blot and RT-PCR analysis showed distinct expression patterns of the three Physcomitrella PHO1 genes. The investigation of Pi starvation effects on some Pi-deprivation responsive genes demonstrates that Physcomitrella has evolved a similar mechanism as higher plants to respond to Pi deficiency. Promoter activity analysis for the Physcomitrella PHO1 family genes using promoter-GUS fusions revealed their expression in protonemata and gametophores but at different levels and with different patterns, suggesting these genes may play distinct roles in Pi transport and/or Pi homeostasis in the moss plant. Single knockout mutants of the three genes were generated by gene targeting and one of them displayed a reduced Pi content in the protonemata under Pi starvation. The evolution of the PHO1 family in land plants was also discussed. Together, these findings indicate that the PHO1 family genes, present in a broad range of plant species from lower plants to flowering plants, play important roles in Pi transport and homeostasis. Résumé Le phosphate inorganique (Pi) est un nutriment essentiel à la croissance des plantes et au rendement de la production végétale. Dans beaucoup d'agro-écosystèmes, ce nutriment est limitant. Les plantes ont développé des adaptations métaboliques et développementales pour palier à la faible disponibilité du Pi. Il a été démontré que la protéine PHOI est indispensable au transfert du Pi dans le xylème des racines d' Arabidopsis. Cette étude porte sur la famille de gènes définie par PHO1 ; ceci, dans deux organismes modèles : la plante Arabidopsis pour les végétaux supérieurs, et la mousse Physcomitrella pour les végétaux inférieurs. Dix homologues à PHOI dans Arabidopsis et trois homologues dans Physcomitrella ont été identifiés. Toutes les protéines encodées présentent un domaine tripartite SPX dans leur partie N terminale hydrophile et un domaine EXS dans la partie C terminale hydrophobe hautement conservée d'entre eux. L'analyse par RT-PCR de l'expression des gènes PHO1 dans Arabidopsis révèle une expression ectopique pour la plupart, à l'exception de deux gènes dont l'expression est uniquement florale ; ceci suggère l'implication de cette famille non seulement dans le transport mais aussi dans l'homéostasie du Pi dans Arabidopsis. L'observation de l'expression de ces gènes en fonction de l'absence de différents nutriments montre que certains gènes sont fortement régulés lors de carences en NO3, Mg et Zn. L'analyse par northern blot et RT-PCR met en évidence des profils d'expression distincts pour les trois gènes de Physcomitrella. Les effets de la carence en Pi sur Physcomitrella ont été étudiés par le biais de gènes dépendants connus pour Arabidopsis, les résultats suggèrent un mode de réponse à cette carence conservé entre les végétaux inférieurs et supérieurs. La localisation tissulaire de l'expression de la famille PHO1 dans la mousse a été étudiée au moyen du gène rapporteur GUS fusionné aux différents promoteurs. Ceci a révélé leur expression dans les protonemata et les gametophores, mais à des intensités et avec des profils différents, ce qui suggère des implications distinctes dans le transport et/ou l'homéostasie du Pi dans la mousse. Des simples mutants knockout ont été générés pour chaque gène de mousse ; l'un d'eux présente une diminution du contenu protonemal en Pi lorsque soumis à une carence en Pi. L'évolution de la famille PHO1 dans les plantes terrestres est également discutée. Ensemble, ces résultats indiquent que les gènes de la famille PHO1 sont présents dans une large gamme de plantes allant des végétaux inférieurs aux supérieurs, et cette étude démontre que leur conservation se justifie potentiellement par le fait qu'ils sont probablement impliqués dans des mécanismes conservés de transport et d'homéostasie du Pi.
Resumo:
Boron deficiency in coffee is widely spread in Brazilian plantations, but responses to B fertilizer have been erratic, depending on the year, form and time of application and B source. A better understanding of the effects of B on plant physiology and anatomy is important to establish a rational fertilization program since B translocation within the plant may be affected by plant anatomy. In this experiment, coffee plantlets of two varieties were grown in nutrient solutions with B levels of 0.0 (deficient), 5.0 µM (adequate) and 25.0 µM (high). At the first symptoms of deficiency, leaves were evaluated, the cell walls separated and assessed for B and Ca concentrations. Scanning electron micrographs were taken of cuts of young leaves and branch tips. The response of both coffee varieties to B was similar and toxicity symptoms were not observed. Boron concentrations in the cell walls increased with B solution while Ca concentrations were unaffected. The Ca/B ratio decreased with the increase of B in the nutrient solution. In deficiency of B, vascular tissues were disorganized and xylem walls thinner. B-deficient leaves had fewer and deformed stomata.
Resumo:
PHO1 was previously identified in Arabidopsis (Arabidopsis thaliana) as a protein involved in loading inorganic phosphate (Pi) into the xylem of roots and its expression was associated with the vascular cylinder. Seven genes homologous to AtPHO1 (PpPHO1;1-PpPHO1;7) have been identified in the moss Physcomitrella patens. The corresponding proteins harbor an SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the conserved C-terminal hydrophobic portion, both common features of the plant PHO1 family. Northern-blot analysis showed distinct expression patterns for the PpPHO1 genes, both at the tissue level and in response to phosphate deficiency. Transgenic P. patens expressing the beta-glucuronidase reporter gene under three different PpPHO1 promoters revealed distinct expression profiles in various tissues. Expression of PpPHO1;1 and PpPHO1;7 was specifically induced by Pi starvation. P. patens homologs to the Arabidopsis PHT1, DGD2, SQD1, and APS1 genes also responded to Pi deficiency by increased mRNA levels. Morphological changes associated with Pi deficiency included elongation of caulonemata with inhibition of the formation of side branches, resulting in colonies with greater diameter, but reduced mass compared to Pi-sufficient plants. Under Pi-deficient conditions, P. patens also increased the synthesis of ribonucleases and of an acid phosphatase, and increased the ratio of sulfolipids over phospholipids. These results indicate that P. patens and higher plants share some common strategies to adapt to Pi deficiency, although morphological changes are distinct, and that the PHO1 proteins are well conserved in bryophyte despite the lack of a developed vascular system.
Resumo:
The deleterious effects of both Mn deficiency and excess on the development of plants have been evaluated with regard to aspects of shoot anatomy, ultrastructure and biochemistry, focusing mainly on the manifestation of visual symptoms. However, there is little information in the literature on changes in the root system in response to Mn supply. The objective of this study was to evaluate the effects of Mn doses (0.5, 2.0 and 200.0 μmol L-1) in a nutrient solution on the anatomy of leaves and roots of the Glycine max (L.) cultivars Santa Rosa, IAC-15 and IAC-Foscarin 31. Visual deficiency symptoms were first observed in Santa Rosa and IAC-15, which were also the only cultivars where Mn-toxicity symptoms were observed. Only in IAC-15, a high Mn supply led to root diameter thickening, but without alteration in cells of the bark, epidermis, exodermis and endodermis. The degree of disorganization of the xylem vessels, in particular the metaxylem, differed in the cultivars. Quantity and shape of the palisade parenchyma cells were influenced by both Mn deficiency and toxicity. A reduction in the number of chloroplasts was observed in the three Mn-deficient genotypes. The anatomical alterations in IAC-15 due to nutritional stress were greater, as expressed in extensive root cell cytoplasm disorganization and increased vacuolation at high Mn doses. The degree of changes in the anatomical and ultrastructural organization of roots and leaves of the soybean genotypes studied differed, suggesting the existence of tolerance mechanisms to different intensities of Mn deficiency or excess.
Resumo:
The PHO1 protein is involved in loading inorganic phosphate (Pi) to the root xylem. Ten genes homologous to AtPHO1 are present in the Arabidopsis thaliana (L.) Heyn genome. From this gene family, transcript levels of only AtPHO1, AtPHO1;H1 and AtPHO1;H10 were increased by Pi-deficiency. While the up-regulation of AtPHO1;H1 and AtPHO1;H10 by Pi deficiency followed the same rapid kinetics and was dependent on the PHR1 transcription factor, phosphite only strongly suppressed the expression of AtPHO1;H1 and had a minor effect on AtPHO1;H10. Addition of sucrose was found to increase transcript levels of both AtPHO1 and AtPHO1;H1 in Pi-sufficient or Pi-deficient plants, but to suppress AtPHO1:H10 under the same conditions. Treatments of plants with auxin or cytokinin had contrasting effect depending on the gene and on the Pi status of the plants. Thus, while both hormones down-regulated expression of AtPHO1 independently of the plant Pi status, auxin and cytokinin up-regulated AtPHO1;H1 and AtPHO1;H10 expression in Pi-sufficient plants and down-regulated expression in Pi-deficient plants. Treatments with abscisic acid inhibited AtPHO1 and AtPHO1;H1 expression in both Pi-sufficient and Pi-deficient plants, but increased AtPHO1;H10 expression under the same conditions. The inhibition of expression by abscisic acid of AtPHO1 and AtPHO1;H1, and of the Pi-starvation responsive genes AtPHT1;1 and AtIPS1, was dependant on the ABI1 type 2C protein phosphatase. These results reveal that various levels of cross talk between the signal transduction pathways to Pi, sucrose and phytohormones are involved in the regulation of expression of the three AtPHO1 homologues.
Resumo:
Boron deficiency causes large productivity losses in eucalypt stands in extensive areas of the Brazilian Cerrado region, thus understanding B mobility is a key step in selecting genetic materials that will better withstand B limitation. Thus, in this study B mobility was evaluated in two eucalypt clones (68 and 129), under B sufficiency or B deficiency, after foliar application of the 10B isotope tracer to a single mature leaf. Samples of young tissue, mature leaves and roots were collected 0, 1, 5, 12 and 17 days after 10B application. The 10B:11B isotope ratio was determined by HR-ICP-MS. Samples of leaves and xylem sap were collected for the determination of soluble sugars and polyalcohols by ion chromatography. Boron was translocated within eucalypt. Translocation of foliar-applied 10B to the young tissues, mature leaves and roots was higher in clone 129 than in 68. Seventeen days after 10B application to a single mature leaf, between 14 and 18 % of B in the young tissue was originated from foliar B application. In plants with adequate B supply the element was not translocated out of the labeled leaf.
Resumo:
Nutrients are basically transported to the roots by mass flow and diffusion. The aim of this study was to quantify the contribution of these two mechanisms to the acquisition of macronutrients (N, P, K, Ca, Mg, and S) and cationic micronutrients (Fe, Mn, Zn, and Cu) by maize plants as well as xylem exudate volume and composition in response to soil aggregate size and water availability. The experiment was conducted in a greenhouse with samples of an Oxisol, from under two management systems: a region of natural savanna-like vegetation (Cerradão, CER) and continuous maize under conventional management for over 30 years (CCM). The treatments were arranged in a factorial [2 x (1 + 2) x 2] design, with two management systems (CER and CCM), (1 + 2) soil sifted through a 4 mm sieve and two aggregate classes (< 0.5 mm and 0.5 - 4.0 mm) and two soil matric potentials (-40 and -10 kPa). These were evaluated in a randomized block design with four replications. The experiment was conducted for 70 days after sowing. The influence of soil aggregate size and water potential on the nutrient transport mechanisms was highest in soil samples with higher nutrient concentrations in solution, in the CER system; diffusion became more relevant when water availability was higher and in aggregates < 0.5 mm. The volume of xylem exudate collected from maize plants increased with the decrease in aggregate size and the increased availability of soil water in the CER system. The highest Ca and Mg concentrations in the xylem exudate of plants grown on samples from the CER system were related to the high concentrations of these nutrients in the soil solution of this management system.
Resumo:
Jasmonates are lipid mediators that control defence gene expression in response to wounding and other environmental stresses. These small molecules can accumulate at distances up to several cm from sites of damage and this is likely to involve cell-to-cell jasmonate transport. Also, and independently of jasmonate synthesis, transport and perception, different long-distance wound signals that stimulate distal jasmonate synthesis are propagated at apparent speeds of several cmmin(-1) to tissues distal to wounds in a mechanism that involves clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes. A search for jasmonate synthesis enzymes that might decode these signals revealed LOX6, a lipoxygenase that is necessary for much of the rapid accumulation of jasmonic acid at sites distal to wounds. Intriguingly, the LOX6 promoter is expressed in a distinct niche of cells that are adjacent to mature xylem vessels, a location that would make these contact cells sensitive to the release of xylem water column tension upon wounding. We propose a model in which rapid axial changes in xylem hydrostatic pressure caused by wounding travel through the vasculature and lead to slower, radially dispersed pressure changes that act in a clade 3 GLR-dependent mechanism to promote distal jasmonate synthesis.
Resumo:
The PHO1 family comprises 11 members in Arabidopsis thaliana. In order to decipher the role of these genes in inorganic phosphate (Pi) transport and homeostasis, complementation of the pho1 mutant, deficient in loading Pi to the root xylem, was determined by the expression of the PHO1 homologous genes under the control of the PHO1 promoter. Only PHO1 and the homologue PHO1;H1 could complement pho1. The PHO1;H1 promoter was active in the vascular cylinder of roots and shoots. Expression of PHO1;H1 was very low in Pi-sufficient plants, but was strongly induced under Pi-deficient conditions. T-DNA knock-out mutants of PHO1;H1 neither showed growth defects nor alteration in Pi transport dynamics, or Pi content, compared with wild type. However, the double mutant pho1/pho1;h1 showed a strong reduction in growth and in the capacity to transfer Pi from the root to the shoot compared with pho1. Grafting experiments revealed that phenotypes associated with the pho1 and pho1/pho1;h1 mutants were linked to the lack of gene expression in the root. The increased expression of PHO1;H1 under Pi deficiency was largely controlled by the transcription factor PHR1 and was suppressed by the phosphate analogue phosphite, whereas the increase of PHO1 expression was independent of PHR1 and was not influenced by phosphite. Together, these data reveal that although transfer of Pi to the root xylem vessel is primarily mediated by PHO1, the homologue PHO1;H1 also contributes to Pi loading to the xylem, and that the two corresponding genes are regulated by Pi deficiency by distinct signal transduction pathways.
Resumo:
The objective of this work was the transformation of tobacco and 'Valencia' sweet orange with the GUS gene driven by the citrus phenylalanine ammonia-lyase (PAL) gene promoter (CsPP). Transformation was accomplished by co-cultivation of tobacco and 'Valência' sweet orange explants with Agrobacterium tumefaciens containing the binary vector CsPP-GUS/2201. After plant transformation and regeneration, histochemical analyses using GUS staining revealed that CsPP promoter preferentially, but not exclusively, conferred gene expression in xylem tissues of tobacco. Weaker GUS staining was also detected throughout the petiole region in tobacco and citrus CsPP transgenic plants.
Resumo:
The continuous production of vascular tissues through secondary growth results in radial thickening of plant organs and is pivotal for various aspects of plant growth and physiology, such as water transport capacity or resistance to mechanical stress. It is driven by the vascular cambium, which produces inward secondary xylem and outward secondary phloem. In the herbaceous plant Arabidopsis thaliana (Arabidopsis), secondary growth occurs in stems, in roots and in the hypocotyl. In the latter, radial growth is most prominent and not obscured by parallel ongoing elongation growth. Moreover, its progression is reminiscent of the secondary growth mode of tree trunks. Thus, the Arabidopsis hypocotyl is a very good model to study basic molecular mechanisms of secondary growth. Genetic approaches have succeeded in the identification of various factors, including peptides, receptors, transcription factors and hormones, which appear to participate in a complex network that controls radial growth. Many of these players are conserved between herbaceous and woody plants. In this review, we will focus on what is known about molecular mechanisms and regulators of vascular secondary growth in the Arabidopsis hypocotyl.
Resumo:
Les plantes sont essentielles pour les sociétés humaines. Notre alimentation quotidienne, les matériaux de constructions et les sources énergétiques dérivent de la biomasse végétale. En revanche, la compréhension des multiples aspects développementaux des plantes est encore peu exploitée et représente un sujet de recherche majeur pour la science. L'émergence des technologies à haut débit pour le séquençage de génome à grande échelle ou l'imagerie de haute résolution permet à présent de produire des quantités énormes d'information. L'analyse informatique est une façon d'intégrer ces données et de réduire la complexité apparente vers une échelle d'abstraction appropriée, dont la finalité est de fournir des perspectives de recherches ciblées. Ceci représente la raison première de cette thèse. En d'autres termes, nous appliquons des méthodes descriptives et prédictives combinées à des simulations numériques afin d'apporter des solutions originales à des problèmes relatifs à la morphogénèse à l'échelle de la cellule et de l'organe. Nous nous sommes fixés parmi les objectifs principaux de cette thèse d'élucider de quelle manière l'interaction croisée des phytohormones auxine et brassinosteroïdes (BRs) détermine la croissance de la cellule dans la racine du méristème apical d'Arabidopsis thaliana, l'organisme modèle de référence pour les études moléculaires en plantes. Pour reconstruire le réseau de signalement cellulaire, nous avons extrait de la littérature les informations pertinentes concernant les relations entre les protéines impliquées dans la transduction des signaux hormonaux. Le réseau a ensuite été modélisé en utilisant un formalisme logique et qualitatif pour pallier l'absence de données quantitatives. Tout d'abord, Les résultats ont permis de confirmer que l'auxine et les BRs agissent en synergie pour contrôler la croissance de la cellule, puis, d'expliquer des observations phénotypiques paradoxales et au final, de mettre à jour une interaction clef entre deux protéines dans la maintenance du méristème de la racine. Une étude ultérieure chez la plante modèle Brachypodium dystachion (Brachypo- dium) a révélé l'ajustement du réseau d'interaction croisée entre auxine et éthylène par rapport à Arabidopsis. Chez ce dernier, interférer avec la biosynthèse de l'auxine mène à la formation d'une racine courte. Néanmoins, nous avons isolé chez Brachypodium un mutant hypomorphique dans la biosynthèse de l'auxine qui affiche une racine plus longue. Nous avons alors conduit une analyse morphométrique qui a confirmé que des cellules plus anisotropique (plus fines et longues) sont à l'origine de ce phénotype racinaire. Des analyses plus approfondies ont démontré que la différence phénotypique entre Brachypodium et Arabidopsis s'explique par une inversion de la fonction régulatrice dans la relation entre le réseau de signalisation par l'éthylène et la biosynthèse de l'auxine. L'analyse morphométrique utilisée dans l'étude précédente exploite le pipeline de traitement d'image de notre méthode d'histologie quantitative. Pendant la croissance secondaire, la symétrie bilatérale de l'hypocotyle est remplacée par une symétrie radiale et une organisation concentrique des tissus constitutifs. Ces tissus sont initialement composés d'une douzaine de cellules mais peuvent aisément atteindre des dizaines de milliers dans les derniers stades du développement. Cette échelle dépasse largement le seuil d'investigation par les moyens dits 'traditionnels' comme l'imagerie directe de tissus en profondeur. L'étude de ce système pendant cette phase de développement ne peut se faire qu'en réalisant des coupes fines de l'organe, ce qui empêche une compréhension des phénomènes cellulaires dynamiques sous-jacents. Nous y avons remédié en proposant une stratégie originale nommée, histologie quantitative. De fait, nous avons extrait l'information contenue dans des images de très haute résolution de sections transverses d'hypocotyles en utilisant un pipeline d'analyse et de segmentation d'image à grande échelle. Nous l'avons ensuite combiné avec un algorithme de reconnaissance automatique des cellules. Cet outil nous a permis de réaliser une description quantitative de la progression de la croissance secondaire révélant des schémas développementales non-apparents avec une inspection visuelle classique. La formation de pôle de phloèmes en structure répétée et espacée entre eux d'une longueur constante illustre les bénéfices de notre approche. Par ailleurs, l'exploitation approfondie de ces résultats a montré un changement de croissance anisotropique des cellules du cambium et du phloème qui semble en phase avec l'expansion du xylème. Combinant des outils génétiques et de la modélisation biomécanique, nous avons démontré que seule la croissance plus rapide des tissus internes peut produire une réorientation de l'axe de croissance anisotropique des tissus périphériques. Cette prédiction a été confirmée par le calcul du ratio des taux de croissance du xylème et du phloème au cours de développement secondaire ; des ratios élevés sont effectivement observés et concomitant à l'établissement progressif et tangentiel du cambium. Ces résultats suggèrent un mécanisme d'auto-organisation établi par un gradient de division méristématique qui génèrent une distribution de contraintes mécaniques. Ceci réoriente la croissance anisotropique des tissus périphériques pour supporter la croissance secondaire. - Plants are essential for human society, because our daily food, construction materials and sustainable energy are derived from plant biomass. Yet, despite this importance, the multiple developmental aspects of plants are still poorly understood and represent a major challenge for science. With the emergence of high throughput devices for genome sequencing and high-resolution imaging, data has never been so easy to collect, generating huge amounts of information. Computational analysis is one way to integrate those data and to decrease the apparent complexity towards an appropriate scale of abstraction with the aim to eventually provide new answers and direct further research perspectives. This is the motivation behind this thesis work, i.e. the application of descriptive and predictive analytics combined with computational modeling to answer problems that revolve around morphogenesis at the subcellular and organ scale. One of the goals of this thesis is to elucidate how the auxin-brassinosteroid phytohormone interaction determines the cell growth in the root apical meristem of Arabidopsis thaliana (Arabidopsis), the plant model of reference for molecular studies. The pertinent information about signaling protein relationships was obtained through the literature to reconstruct the entire hormonal crosstalk. Due to a lack of quantitative information, we employed a qualitative modeling formalism. This work permitted to confirm the synergistic effect of the hormonal crosstalk on cell elongation, to explain some of our paradoxical mutant phenotypes and to predict a novel interaction between the BREVIS RADIX (BRX) protein and the transcription factor MONOPTEROS (MP),which turned out to be critical for the maintenance of the root meristem. On the same subcellular scale, another study in the monocot model Brachypodium dystachion (Brachypodium) revealed an alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis. In the latter, increasing interference with auxin biosynthesis results in progressively shorter roots. By contrast, a hypomorphic Brachypodium mutant isolated in this study in an enzyme of the auxin biosynthesis pathway displayed a dramatically longer seminal root. Our morphometric analysis confirmed that more anisotropic cells (thinner and longer) are principally responsible for the mutant root phenotype. Further characterization pointed towards an inverted regulatory logic in the relation between ethylene signaling and auxin biosynthesis in Brachypodium as compared to Arabidopsis, which explains the phenotypic discrepancy. Finally, the morphometric analysis of hypocotyl secondary growth that we applied in this study was performed with the image-processing pipeline of our quantitative histology method. During its secondary growth, the hypocotyl reorganizes its primary bilateral symmetry to a radial symmetry of highly specialized tissues comprising several thousand cells, starting with a few dozens. However, such a scale only permits observations in thin cross-sections, severely hampering a comprehensive analysis of the morphodynamics involved. Our quantitative histology strategy overcomes this limitation. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with an automated cell type recognition algorithm, it allows precise quantitative characterization of vascular development and reveals developmental patterns that were not evident from visual inspection, for example the steady interspace distance of the phloem poles. Further analyses indicated a change in growth anisotropy of cambial and phloem cells, which appeared in phase with the expansion of xylem. Combining genetic tools and computational modeling, we showed that the reorientation of growth anisotropy axis of peripheral tissue layers only occurs when the growth rate of central tissue is higher than the peripheral one. This was confirmed by the calculation of the ratio of the growth rate xylem to phloem throughout secondary growth. High ratios are indeed observed and concomitant with the homogenization of cambium anisotropy. These results suggest a self-organization mechanism, promoted by a gradient of division in the cambium that generates a pattern of mechanical constraints. This, in turn, reorients the growth anisotropy of peripheral tissues to sustain the secondary growth.
Resumo:
The purple passionfruit plant, Passifloraedulis Sims, ranks second in fruit exportation in Colombia, and its main destination is the European market. However, its production is affected by several diseases, including fusariosis. This paper presents the histopathological features of different tissues affected by the pathogens Fusarium oxysporum and Fusarium solani. Both microorganisms produce similar responses on the plant: colonization of xylem vessels by hyphae and microconidia, hypertrophy and hyperplasia of the cambium, xylem and phloem; destruction of xylem fibers and amyloplasts in parenchymatous cells; and production of gels by the plant. However, there are differences in the colonization mechanism, F. solani penetrates and is concentrated especially at the collar zone, while F. oxysporum penetrates the roots and moves through the vascular system to colonize the plant.
Resumo:
Most studies on measures of transpiration of plants, especially woody fruit, relies on methods of heat supply in the trunk. This study aimed to calibrate the Thermal Dissipation Probe Method (TDP) to estimate the transpiration, study the effects of natural thermal gradients and determine the relation between outside diameter and area of xylem in 'Valencia' orange young plants. TDP were installed in 40 orange plants of 15 months old, planted in boxes of 500 L, in a greenhouse. It was tested the correction of the natural thermal differences (DTN) for the estimation based on two unheated probes. The area of the conductive section was related to the outside diameter of the stem by means of polynomial regression. The equation for estimation of sap flow was calibrated having as standard lysimeter measures of a representative plant. The angular coefficient of the equation for estimating sap flow was adjusted by minimizing the absolute deviation between the sap flow and daily transpiration measured by lysimeter. Based on these results, it was concluded that the method of TDP, adjusting the original calibration and correction of the DTN, was effective in transpiration assessment.
Resumo:
The ferns Anemia tomentosa (Sav.) Sw. var. anthriscifolia (Schrad.) Mickel and Anemia villosa Humb. & Bonpl. ex Willd. are widely associated with vegetation islands on rocky outcrops in Rio de Janeiro. Both species are desiccation tolerant. The leaf anatomy of these species was examined aiming to identify morphological characteristics that would allow the establishment of these species in water-scarce environments. The plants were harvested on "Pedra de Itacoatiara" and prepared according to the usual procedures. The petiole has a uniseriate epidermis with lignified cell walls, conical stegmata, and uniseriate multicelular and glandular trichomes. In A. villosa, the stomata protrude in a respiratory line. Under the epidermis the cells have thick, lignified walls. The parenchyma has phenolic compounds and starch grains. The petiole vascular bundles are surrounded by endodermis with Casparian strips and the xylem is V-shaped (A. villosa) or arc-shaped (A. tomentosa var. anthriscifolia). The leaf blades have a uniseriate epidermis with sinuous anticlinal and convex periclinal walls, conical stegmata and chloroplasts on both surfaces. The leaf margins of A. villosa have lignified cells. The guard cells of the stomata on the abaxial surface are on the same level or are raised above ordinary epidermal cells. Multicelular uniseriate trichomes and glandular hairs were observed. The dorsiventral mesophyll has loosely packed chlorenchyma with arm-shaped and H-shaped cells. The vascular bundles are surrounded by endodermis with Casparian strips and with parenchymatic extensions towards the epidermis. Anatomical results were analyzed considering the interaction of these plants with abiotic factors.