1000 resultados para XA.418035s(Illinois)
Resumo:
Objective-Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. Methods and Results-Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant approximate to 3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl3-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. Conclusion-Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events. (Arterioscler Thromb Vasc Biol. 2012;32:2185-2196.)
Resumo:
BACKGROUND: Generation of active procoagulant cofactor factor Va (FVa) and its subsequent association with the enzyme activated factor X (FXa) to form the prothrombinase complex is a pivotal initial event in blood coagulation and has been the subject of investigative effort, speculation, and controversy. The current paradigm assumes that FV activation is initiated by limited proteolysis by traces of (meizo) thrombin. METHODS AND RESULTS: Recombinant tick salivary protein TIX-5 was produced and anticoagulant properties were studied with the use of plasma, whole blood, and purified systems. Here, we report that TIX-5 specifically inhibits FXa-mediated FV activation involving the B domain of FV and show that FXa activation of FV is pivotal for plasma and blood clotting. Accordingly, tick feeding is impaired on TIX-5 immune rabbits, displaying the in vivo importance of TIX-5. CONCLUSIONS: Our data elucidate a unique molecular mechanism by which ticks inhibit the host's coagulation system. From our data, we propose a revised blood coagulation scheme in which direct FXa-mediated FV activation occurs in the initiation phase during which thrombin-mediated FV activation is restrained by fibrinogen and inhibitors.
Stability of low molecular weight heparin anti-factor Xa activity in citrated whole blood and plasma
Resumo:
Finnish North American labor contributions and involvement in strikes such as the 1913-14 Michigan Copper Strike are being restored to the historical record and even commemorated; yet some Finnish American communities’ labor history still goes untold. We contend that in the case of DeKalb, Illinois, the Finnish American labor and strike history has been, in part, overshadowed in contemporary remembrance by the city’s promotion of traditional history and commemoration focused on the barbed wire barons. Local Finnish American labor involvement and participation in strikes appears to have been marginalized in favor of a subsequent historical narrative surrounding the capitalist entrepreneurship of elites. However, counter memories of labor struggles may be lost for a variety of reasons. External and internal forces make it difficult for marginalized groups to offer alternatives to the construction of collective memories that exclude them. These forces include, but are not limited to gradual assimilation into dominant culture, internal conflict within social movements, and fear of, or experience with, governmental repression. In our archival research, surveys and interviews with 2nd and 3rd generation Finnish American residents reveal the many forces of “forgetting” that can influence the counter memory of Finnish American labor history in certain communities.
Resumo:
Background In patients with autoimmune diseases associated with antiphospholipid antibodies, precise management of anticoagulation during extracorporeal circulation (ECC) is complicated. It was the aim of the present study to determine whether antifactor Xa (aXa) activity is useful in guiding heparin therapy during ECC. Methods In 15 patients undergoing cardiac surgery, anticoagulation with unfractionated heparin (UFH) and its reversal with protamine were guided using activated clotting time (ACT) (>400 second during ECC; ≤100 second for UFH reversal). For each ACT, the corresponding aXa activity levels were measured. Results A total of 144 blood samples were obtained. ACT and aXa activity were significantly correlated (r = 0.771, p< 0.0001, Spearman rank-order correlation). Using receiver operating characteristic curve (ROC) analyses, the cutoffvalues for aXa activity were 1.14 IU/mL (area under the ROC curve [AUC]: 0.89; inaccuracy rate: 9.4%) to predict ACT > 400 seconds and 0.55 IU/mL (AUC: 0.85; inaccuracy rate: 13.3%) for ACT ≤ 100 seconds. Conclusion AXa activity is strongly correlated with ACT, and therefore may be feasible for managing anticoagulation with UFH during ECC.