978 resultados para Wood-carving, Tudor.
Resumo:
3 (1838)
Resumo:
1 - 2 (1837-38)
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2015
Resumo:
v.20:no.37(1938)
Resumo:
v.31:no.35(1949)
Resumo:
Article VII
Resumo:
Water transport in wood is vital for the survival of trees. With synchrotron radiation X-ray tomographic microscopy (SRXTM), it has become possible to characterize and quantify the three-dimensional (3D) network formed by vessels that are responsible for longitudinal transport. In the present study, the spatial size dependence of vessels and the organization inside single growth rings in terms of vessel-induced porosity was studied by SRXTM. Network characteristics, such as connectivity, were deduced by digital image analysis from the processed tomographic data and related to known complex network topologies.
Resumo:
Twenty-six species of white-rotting Agaricomycotina fungi (Basidiomycota) were screened for their ability to produce calcium-oxalate (CaOx) crystals in vitro. Most were able to produce CaOx crystals in malt agar medium in the absence of additional calcium. In the same medium enriched with Ca2+, all the species produced CaOx crystals (weddellite or whewellite). Hyphae of four species (Ganoderma lucidum, Polyporus ciliatus, Pycnoporus cinnabarinus, and Trametes versicolor) were found coated with crystals (weddellite/whewellite). The production of CaOx crystals during the growth phase was confirmed by an investigation of the production kinetics for six of the species considered in the initial screening (Pleurotus citrinopileatus, Pleurotus eryngii, Pleurotus ostreatus, P. cinnabarinus, Trametes suaveolens, and T. versicolor). However, the crystals produced during the growth phase disappeared from the medium over time in four of the six species (P. citrinopileatus, P. eryngii, P. cinnabarinus, and T. suaveolens). For P. cinnabarinus, the disappearance of the crystals was correlated with a decrease in the total oxalate concentration measured in the medium from 0.65 μg mm−2 (at the maximum accumulation rate) to 0.30 μg mm−2. The decrease in the CaOx concentration was correlated with a change in mycelia morphology. The oxalate dissolution capability of all the species was also tested in a medium containing calcium oxalate as the sole source of carbon (modified Schlegel medium). Three species (Agaricus blazei, Pleurotus tuberregium, and P. ciliatus) presented a dissolution halo around the growth zone. This study shows that CaOx crystal production is a widespread phenomenon in white-rot fungi, and that an excess of Ca2+ can enhance CaOx crystal production. In addition, it shows that some white-rot fungal species are capable of dissolving CaOx crystals after growth has ceased. These results highlight a diversity of responses around the production or dissolution of calcium oxalate in white-rot fungi and reveal an unexpected potential importance of fungi on the oxalate cycle in the environment.
Resumo:
In this study, we evaluated several techniques for the detection of the yeast form of Cryptococcus in decaying wood and measured the viability of these fungi in environmental samples stored in the laboratory. Samples were collected from a tree known to be positive for Cryptococcus and were each inoculated on 10 Niger seed agar (NSA) plates. The conventional technique (CT) yielded a greater number of positive samples and indicated a higher fungal density [in colony forming units per gram of wood (CFU.g-1)] compared to the humid swab technique (ST). However, the difference in positive and false negative results between the CT-ST was not significant. The threshold of detection for the CT was 0.05.10³ CFU.g-1, while the threshold for the ST was greater than 0.1.10³ CFU-1. No colonies were recovered using the dry swab technique. We also determined the viability of Cryptococcus in wood samples stored for 45 days at 25ºC using the CT and ST and found that samples not only continued to yield a positive response, but also exhibited an increase in CFU.g-1, suggesting that Cryptococcus is able to grow in stored environmental samples. The ST.1, in which samples collected with swabs were immediately plated on NSA medium, was more efficient and less laborious than either the CT or ST and required approximately 10 min to perform; however, additional studies are needed to validate this technique.
Resumo:
BACKGROUND Obeche wood dust is a known cause of occupational asthma where an IgE-mediated mechanism has been demonstrated. OBJECTIVE To characterize the allergenic profile of obeche wood dust and evaluate the reactivity of the proteins by in vitro, ex vivo and in vivo assays in carpenters with confirmed rhinitis and/or asthma MATERIALS AND METHODS An in-house obeche extract was obtained, and two IgE binding bands were purified (24 and 12 kDa) and sequenced by N-terminal identity. Specific IgE and IgG, basophil activation tests and skin prick tests (SPTs) were performed with whole extract and purified proteins. CCD binding was analyzed by ELISA inhibition studies. RESULTS Sixty-two subjects participated: 12 with confirmed occupational asthma/rhinitis (ORA+), 40 asymptomatic exposed (ORA-), and 10 controls. Of the confirmed subjects, 83% had a positive SPT to obeche. There was a 100% recognition by ELISA in symptomatic subjects vs. 30% and 10% in asymptomatic exposed subjects and controls respectively (p<0.05). Two new proteins were purified, a 24 kDa protein identified as a putative thaumatin-like protein and a 12 kDa gamma-expansin. Both showed allergenic activity in vitro, with the putative thaumatin being the most active, with 92% recognition by ELISA and 100% by basophil activation test in ORA+ subjects. Cross-reactivity due to CCD was ruled out in 82% of cases. CONCLUSIONS Two proteins of obeche wood were identified and were recognized by a high percentage of symptomatic subjects and by a small proportion of asymptomatic exposed subjects. Further studies are required to evaluate cross reactivity with other plant allergens.